A residual a posteriori error estimate for the time–domain boundary element method

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Heiko Gimperlein
  • Ceyhun Özdemir
  • David Stark
  • Ernst P. Stephan

Organisationseinheiten

Externe Organisationen

  • Heriot-Watt University
  • Universität Paderborn
  • Technische Universität Graz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)239-280
Seitenumfang42
FachzeitschriftNumerische Mathematik
Jahrgang146
Ausgabenummer2
Frühes Online-Datum25 Aug. 2020
PublikationsstatusVeröffentlicht - Okt. 2020

Abstract

This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.

ASJC Scopus Sachgebiete

Zitieren

A residual a posteriori error estimate for the time–domain boundary element method. / Gimperlein, Heiko; Özdemir, Ceyhun; Stark, David et al.
in: Numerische Mathematik, Jahrgang 146, Nr. 2, 10.2020, S. 239-280.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Gimperlein H, Özdemir C, Stark D, Stephan EP. A residual a posteriori error estimate for the time–domain boundary element method. Numerische Mathematik. 2020 Okt;146(2):239-280. Epub 2020 Aug 25. doi: 10.1007/s00211-020-01142-y
Gimperlein, Heiko ; Özdemir, Ceyhun ; Stark, David et al. / A residual a posteriori error estimate for the time–domain boundary element method. in: Numerische Mathematik. 2020 ; Jahrgang 146, Nr. 2. S. 239-280.
Download
@article{fe1575bb09764ab3874855590bee5578,
title = "A residual a posteriori error estimate for the time–domain boundary element method",
abstract = "This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.",
author = "Heiko Gimperlein and Ceyhun {\"O}zdemir and David Stark and Stephan, {Ernst P.}",
note = "Funding Information: H. G. acknowledges partial support by ERC Advanced Grant HARG 268105 and the EPSRC Impact Acceleration Account. C. {\"O}. was supported by a scholarship of the Avicenna Foundation. ",
year = "2020",
month = oct,
doi = "10.1007/s00211-020-01142-y",
language = "English",
volume = "146",
pages = "239--280",
journal = "Numerische Mathematik",
issn = "0029-599X",
publisher = "Springer New York",
number = "2",

}

Download

TY - JOUR

T1 - A residual a posteriori error estimate for the time–domain boundary element method

AU - Gimperlein, Heiko

AU - Özdemir, Ceyhun

AU - Stark, David

AU - Stephan, Ernst P.

N1 - Funding Information: H. G. acknowledges partial support by ERC Advanced Grant HARG 268105 and the EPSRC Impact Acceleration Account. C. Ö. was supported by a scholarship of the Avicenna Foundation.

PY - 2020/10

Y1 - 2020/10

N2 - This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.

AB - This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.

UR - http://www.scopus.com/inward/record.url?scp=85089785410&partnerID=8YFLogxK

U2 - 10.1007/s00211-020-01142-y

DO - 10.1007/s00211-020-01142-y

M3 - Article

AN - SCOPUS:85089785410

VL - 146

SP - 239

EP - 280

JO - Numerische Mathematik

JF - Numerische Mathematik

SN - 0029-599X

IS - 2

ER -