A relation between mean curvature flow solitons and minimal submanifolds

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Max-Planck-Institut für Mathematik in den Naturwissenschaften (MIS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)175-186
Seitenumfang12
FachzeitschriftMathematische Nachrichten
Jahrgang229
PublikationsstatusVeröffentlicht - 1 Jan. 2001
Extern publiziertJa

Abstract

We derive a one to one correspondence between conformal solitons of the mean curvature flow in an ambient space N and minimal submanifolds in a different ambient space Ñ, where Ñ equals ℝ x N equipped with a warped product metric and show that a submanifold in N converges to a conformai soliton under the mean curvature flow in N if and only if its associated submanifold in Ñ converges to a minimal submanifold under a rescaled mean curvature flow in Ñ. We then define a notion of stability for conformai solitons and obtain Lp estimates as well as pointwise estimates for the curvature of stable solitons.

ASJC Scopus Sachgebiete

Zitieren

A relation between mean curvature flow solitons and minimal submanifolds. / Smoczyk, Knut.
in: Mathematische Nachrichten, Jahrgang 229, 01.01.2001, S. 175-186.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Smoczyk K. A relation between mean curvature flow solitons and minimal submanifolds. Mathematische Nachrichten. 2001 Jan 1;229:175-186. doi: 10.1002/1522-2616(200109)229:1<175::AID-MANA175>3.0.CO;2-H
Download
@article{c775d746560346ec9e1a5f10ec8ae91b,
title = "A relation between mean curvature flow solitons and minimal submanifolds",
abstract = "We derive a one to one correspondence between conformal solitons of the mean curvature flow in an ambient space N and minimal submanifolds in a different ambient space {\~N}, where {\~N} equals ℝ x N equipped with a warped product metric and show that a submanifold in N converges to a conformai soliton under the mean curvature flow in N if and only if its associated submanifold in {\~N} converges to a minimal submanifold under a rescaled mean curvature flow in {\~N}. We then define a notion of stability for conformai solitons and obtain Lp estimates as well as pointwise estimates for the curvature of stable solitons.",
keywords = "Mean curvature flow, Solitons",
author = "Knut Smoczyk",
year = "2001",
month = jan,
day = "1",
doi = "10.1002/1522-2616(200109)229:1<175::AID-MANA175>3.0.CO;2-H",
language = "English",
volume = "229",
pages = "175--186",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-VCH Verlag",

}

Download

TY - JOUR

T1 - A relation between mean curvature flow solitons and minimal submanifolds

AU - Smoczyk, Knut

PY - 2001/1/1

Y1 - 2001/1/1

N2 - We derive a one to one correspondence between conformal solitons of the mean curvature flow in an ambient space N and minimal submanifolds in a different ambient space Ñ, where Ñ equals ℝ x N equipped with a warped product metric and show that a submanifold in N converges to a conformai soliton under the mean curvature flow in N if and only if its associated submanifold in Ñ converges to a minimal submanifold under a rescaled mean curvature flow in Ñ. We then define a notion of stability for conformai solitons and obtain Lp estimates as well as pointwise estimates for the curvature of stable solitons.

AB - We derive a one to one correspondence between conformal solitons of the mean curvature flow in an ambient space N and minimal submanifolds in a different ambient space Ñ, where Ñ equals ℝ x N equipped with a warped product metric and show that a submanifold in N converges to a conformai soliton under the mean curvature flow in N if and only if its associated submanifold in Ñ converges to a minimal submanifold under a rescaled mean curvature flow in Ñ. We then define a notion of stability for conformai solitons and obtain Lp estimates as well as pointwise estimates for the curvature of stable solitons.

KW - Mean curvature flow

KW - Solitons

UR - http://www.scopus.com/inward/record.url?scp=0035661405&partnerID=8YFLogxK

U2 - 10.1002/1522-2616(200109)229:1<175::AID-MANA175>3.0.CO;2-H

DO - 10.1002/1522-2616(200109)229:1<175::AID-MANA175>3.0.CO;2-H

M3 - Article

AN - SCOPUS:0035661405

VL - 229

SP - 175

EP - 186

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

ER -

Von denselben Autoren