A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in ℝ 3

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • F. Leydecker
  • M. Maischak
  • E. P. Stephan
  • M. Teltscher

Organisationseinheiten

Externe Organisationen

  • Brunel University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)277-293
Seitenumfang17
FachzeitschriftApplicable analysis
Jahrgang91
Ausgabenummer2
Frühes Online-Datum14 Sept. 2011
PublikationsstatusVeröffentlicht - Feb. 2012

Abstract

We examine the construction of p-hierarchical local a posteriori error estimators for time-harmonic electromagnetic problems using edge-based finite elements and boundary elements for hexahedral and tetrahedral meshes in ℝ 3. The error estimators rely on stable subspace decompositions of Nédélec elements in H(curl, Ω) and Raviart-Thomas elements in.

ASJC Scopus Sachgebiete

Zitieren

A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in ℝ 3. / Leydecker, F.; Maischak, M.; Stephan, E. P. et al.
in: Applicable analysis, Jahrgang 91, Nr. 2, 02.2012, S. 277-293.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Leydecker F, Maischak M, Stephan EP, Teltscher M. A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in ℝ 3. Applicable analysis. 2012 Feb;91(2):277-293. Epub 2011 Sep 14. doi: 10.1080/00036811.2011.614605
Leydecker, F. ; Maischak, M. ; Stephan, E. P. et al. / A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in ℝ 3. in: Applicable analysis. 2012 ; Jahrgang 91, Nr. 2. S. 277-293.
Download
@article{74af6e64d2d24e828c191d56686fb846,
title = "A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in ℝ 3",
abstract = "We examine the construction of p-hierarchical local a posteriori error estimators for time-harmonic electromagnetic problems using edge-based finite elements and boundary elements for hexahedral and tetrahedral meshes in ℝ 3. The error estimators rely on stable subspace decompositions of N{\'e}d{\'e}lec elements in H(curl, Ω) and Raviart-Thomas elements in.",
keywords = "electromagnetic scattering, fe-be coupling, hierarchical-based a posteriori error estimation, Maxwell's equations, N{\'e}d{\'e}lec elements, Raviart-Thomas elements",
author = "F. Leydecker and M. Maischak and Stephan, {E. P.} and M. Teltscher",
year = "2012",
month = feb,
doi = "10.1080/00036811.2011.614605",
language = "English",
volume = "91",
pages = "277--293",
journal = "Applicable analysis",
issn = "0003-6811",
publisher = "Taylor and Francis Ltd.",
number = "2",

}

Download

TY - JOUR

T1 - A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in ℝ 3

AU - Leydecker, F.

AU - Maischak, M.

AU - Stephan, E. P.

AU - Teltscher, M.

PY - 2012/2

Y1 - 2012/2

N2 - We examine the construction of p-hierarchical local a posteriori error estimators for time-harmonic electromagnetic problems using edge-based finite elements and boundary elements for hexahedral and tetrahedral meshes in ℝ 3. The error estimators rely on stable subspace decompositions of Nédélec elements in H(curl, Ω) and Raviart-Thomas elements in.

AB - We examine the construction of p-hierarchical local a posteriori error estimators for time-harmonic electromagnetic problems using edge-based finite elements and boundary elements for hexahedral and tetrahedral meshes in ℝ 3. The error estimators rely on stable subspace decompositions of Nédélec elements in H(curl, Ω) and Raviart-Thomas elements in.

KW - electromagnetic scattering

KW - fe-be coupling

KW - hierarchical-based a posteriori error estimation

KW - Maxwell's equations

KW - Nédélec elements

KW - Raviart-Thomas elements

UR - http://www.scopus.com/inward/record.url?scp=84860676765&partnerID=8YFLogxK

U2 - 10.1080/00036811.2011.614605

DO - 10.1080/00036811.2011.614605

M3 - Article

AN - SCOPUS:84860676765

VL - 91

SP - 277

EP - 293

JO - Applicable analysis

JF - Applicable analysis

SN - 0003-6811

IS - 2

ER -