Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 129-137 |
Seitenumfang | 9 |
Fachzeitschrift | Computers and Structures |
Jahrgang | 69 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 13 Okt. 1998 |
Abstract
This paper presents an algebraic multigrid solver which can also be applied as a preconditioner for the conjugate gradient method. The solver has been implemented in a parallel version of the finite element program FEAP, see Zienkiewicz O. C. and Taylor R. L. The Finite Element Method, volume 1. McGraw-Hill, London, 4th edition, 1989 [1]. The aim of the paper is to show the performance of these solvers on two different MIMD computers and to present a concept for porting a finite element code to a parallel machine of MIMD class. We discuss the parallel mesh generation and the parallel solution of problems in elasticity.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Mathematik (insg.)
- Modellierung und Simulation
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Ingenieurwesen (insg.)
- Maschinenbau
- Informatik (insg.)
- Angewandte Informatik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Computers and Structures, Jahrgang 69, Nr. 1, 13.10.1998, S. 129-137.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A parallel algebraic multigrid solver for problems in solid mechanics discretisized by finite elements
AU - Wriggers, Peter
AU - Boersma, A.
PY - 1998/10/13
Y1 - 1998/10/13
N2 - This paper presents an algebraic multigrid solver which can also be applied as a preconditioner for the conjugate gradient method. The solver has been implemented in a parallel version of the finite element program FEAP, see Zienkiewicz O. C. and Taylor R. L. The Finite Element Method, volume 1. McGraw-Hill, London, 4th edition, 1989 [1]. The aim of the paper is to show the performance of these solvers on two different MIMD computers and to present a concept for porting a finite element code to a parallel machine of MIMD class. We discuss the parallel mesh generation and the parallel solution of problems in elasticity.
AB - This paper presents an algebraic multigrid solver which can also be applied as a preconditioner for the conjugate gradient method. The solver has been implemented in a parallel version of the finite element program FEAP, see Zienkiewicz O. C. and Taylor R. L. The Finite Element Method, volume 1. McGraw-Hill, London, 4th edition, 1989 [1]. The aim of the paper is to show the performance of these solvers on two different MIMD computers and to present a concept for porting a finite element code to a parallel machine of MIMD class. We discuss the parallel mesh generation and the parallel solution of problems in elasticity.
KW - Algebraic multigrid methods
KW - Parallization
KW - Solid mechanics
UR - http://www.scopus.com/inward/record.url?scp=0032188434&partnerID=8YFLogxK
U2 - 10.1016/S0045-7949(98)00053-4
DO - 10.1016/S0045-7949(98)00053-4
M3 - Article
AN - SCOPUS:0032188434
VL - 69
SP - 129
EP - 137
JO - Computers and Structures
JF - Computers and Structures
SN - 0045-7949
IS - 1
ER -