Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 71-90 |
Seitenumfang | 20 |
Fachzeitschrift | International Mathematics Research Notices |
Jahrgang | 2020 |
Ausgabenummer | 1 |
Frühes Online-Datum | 22 Feb. 2018 |
Publikationsstatus | Veröffentlicht - Jan. 2020 |
Abstract
Coxeter defined the notion of frieze pattern, and Conway and Coxeter proved that triangulations of polygons are in bijection with integral frieze patterns. We show a p-angulated generalisation involving nonintegral frieze patterns. We also show that polygon dissections give rise to even more general nonintegral frieze patterns.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Mathematics Research Notices, Jahrgang 2020, Nr. 1, 01.2020, S. 71-90.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A p-angulated Generalisation of Conway and Coxeter's Theorem on Frieze Patterns
AU - Holm, Thorsten
AU - Jørgensen, Peter
N1 - Funding Information: This work was supported by the Engineering and Physical Sciences Research Council [grant
PY - 2020/1
Y1 - 2020/1
N2 - Coxeter defined the notion of frieze pattern, and Conway and Coxeter proved that triangulations of polygons are in bijection with integral frieze patterns. We show a p-angulated generalisation involving nonintegral frieze patterns. We also show that polygon dissections give rise to even more general nonintegral frieze patterns.
AB - Coxeter defined the notion of frieze pattern, and Conway and Coxeter proved that triangulations of polygons are in bijection with integral frieze patterns. We show a p-angulated generalisation involving nonintegral frieze patterns. We also show that polygon dissections give rise to even more general nonintegral frieze patterns.
UR - http://www.scopus.com/inward/record.url?scp=85081016807&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1709.09861
DO - 10.48550/arXiv.1709.09861
M3 - Article
AN - SCOPUS:85081016807
VL - 2020
SP - 71
EP - 90
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 1
ER -