Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 561-568 |
Seitenumfang | 8 |
Fachzeitschrift | Production Engineering |
Jahrgang | 16 |
Ausgabenummer | 4 |
Frühes Online-Datum | 10 Nov. 2021 |
Publikationsstatus | Veröffentlicht - Aug. 2022 |
Abstract
Mobile diamond wire sawing is a highly flexible, productive and, versatile cutting process. Accordingly, it is used in many areas, such as the dismantling of nuclear power plants or wind turbines. Despite the widespread use of the process, the cutting process requires continuous manual monitoring by the machine operator. This is due to the continuously changing cutting conditions. A common process error is tool breakage. It is often caused by the displacement of the grinding segments (cutting beads). Due to the cutting speed (up to 30 m/s), these failures cannot be detected and prevented by the machine operator. However, a measuring system or process monitoring does not exist yet. Accordingly, a damaged diamond wire can become hooked, which often results in wire breaks. As a result, grinding segments break away from the wire, which can lead to deadly accidents. Therefore, a new approach for monitoring the tool for diamond wire grinding will be investigated. The paper is divided into five sections. First, the requirements for the sensor system are derived. After the selection of a measuring principle and the functional verification in the grinding process, the monitoring approach is presented and features for monitoring the tool with regard to the displacement of grinding segments are described. It was shown that the developed approach is suitable for monitoring the diamond wire tool during the sawing process. The investigation on a prepared diamond wire tool also demonstrated that the feature allows the detection of displacing grinding segments already from 2 mm.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Maschinenbau
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Production Engineering, Jahrgang 16, Nr. 4, 08.2022, S. 561-568.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A novel tool monitoring approach for diamond wire sawing
AU - Denkena, Berend
AU - Bergmann, Benjamin
AU - Rahner, Björn-Holger
N1 - Funding Information: The research project “All-electric mobile wire saw” is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) as part of the Central SME Innovation Programme (ZIM) and supervised by the Federation of Industrial Research Associations (AiF). The IFW and the cooperation partner Cedima Diamantwerkzeug- und Maschinenbaugesellschaft mbH would like to thank you for the financial support in this project.
PY - 2022/8
Y1 - 2022/8
N2 - Mobile diamond wire sawing is a highly flexible, productive and, versatile cutting process. Accordingly, it is used in many areas, such as the dismantling of nuclear power plants or wind turbines. Despite the widespread use of the process, the cutting process requires continuous manual monitoring by the machine operator. This is due to the continuously changing cutting conditions. A common process error is tool breakage. It is often caused by the displacement of the grinding segments (cutting beads). Due to the cutting speed (up to 30 m/s), these failures cannot be detected and prevented by the machine operator. However, a measuring system or process monitoring does not exist yet. Accordingly, a damaged diamond wire can become hooked, which often results in wire breaks. As a result, grinding segments break away from the wire, which can lead to deadly accidents. Therefore, a new approach for monitoring the tool for diamond wire grinding will be investigated. The paper is divided into five sections. First, the requirements for the sensor system are derived. After the selection of a measuring principle and the functional verification in the grinding process, the monitoring approach is presented and features for monitoring the tool with regard to the displacement of grinding segments are described. It was shown that the developed approach is suitable for monitoring the diamond wire tool during the sawing process. The investigation on a prepared diamond wire tool also demonstrated that the feature allows the detection of displacing grinding segments already from 2 mm.
AB - Mobile diamond wire sawing is a highly flexible, productive and, versatile cutting process. Accordingly, it is used in many areas, such as the dismantling of nuclear power plants or wind turbines. Despite the widespread use of the process, the cutting process requires continuous manual monitoring by the machine operator. This is due to the continuously changing cutting conditions. A common process error is tool breakage. It is often caused by the displacement of the grinding segments (cutting beads). Due to the cutting speed (up to 30 m/s), these failures cannot be detected and prevented by the machine operator. However, a measuring system or process monitoring does not exist yet. Accordingly, a damaged diamond wire can become hooked, which often results in wire breaks. As a result, grinding segments break away from the wire, which can lead to deadly accidents. Therefore, a new approach for monitoring the tool for diamond wire grinding will be investigated. The paper is divided into five sections. First, the requirements for the sensor system are derived. After the selection of a measuring principle and the functional verification in the grinding process, the monitoring approach is presented and features for monitoring the tool with regard to the displacement of grinding segments are described. It was shown that the developed approach is suitable for monitoring the diamond wire tool during the sawing process. The investigation on a prepared diamond wire tool also demonstrated that the feature allows the detection of displacing grinding segments already from 2 mm.
KW - Cutting beads
KW - Diamond wire sawing
KW - Eddy current
KW - Grinding segments
KW - Machine technologie
KW - Process monitoring
UR - http://www.scopus.com/inward/record.url?scp=85118895124&partnerID=8YFLogxK
U2 - 10.1007/s11740-021-01087-7
DO - 10.1007/s11740-021-01087-7
M3 - Article
AN - SCOPUS:85118895124
VL - 16
SP - 561
EP - 568
JO - Production Engineering
JF - Production Engineering
SN - 0944-6524
IS - 4
ER -