Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 199-203 |
Seitenumfang | 5 |
Fachzeitschrift | Communications in Numerical Methods in Engineering |
Jahrgang | 1 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 1985 |
Abstract
In the numerical solution of geometrically nonlinear contact problems by the finite element method, it is often assumed that the modification to the tangent stiffness takes the form of the single rank-one-update characteristic of the linear theory. It is shown that due to the kinematic nonlinearity such a simple structure no longer holds. Within the context of the discrete problem arising from a finite element formulation, explicit expressions for the residual and the tangent stiffness matrix are obtained for both penalty and Lagrangian parameter procedures.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Software
- Mathematik (insg.)
- Modellierung und Simulation
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
- Informatik (insg.)
- Theoretische Informatik und Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Communications in Numerical Methods in Engineering, Jahrgang 1, Nr. 5, 1985, S. 199-203.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A note on tangent stiffness for fully nonlinear contact problems
AU - Wriggers, Peter
AU - Simo, J. C.
PY - 1985
Y1 - 1985
N2 - In the numerical solution of geometrically nonlinear contact problems by the finite element method, it is often assumed that the modification to the tangent stiffness takes the form of the single rank-one-update characteristic of the linear theory. It is shown that due to the kinematic nonlinearity such a simple structure no longer holds. Within the context of the discrete problem arising from a finite element formulation, explicit expressions for the residual and the tangent stiffness matrix are obtained for both penalty and Lagrangian parameter procedures.
AB - In the numerical solution of geometrically nonlinear contact problems by the finite element method, it is often assumed that the modification to the tangent stiffness takes the form of the single rank-one-update characteristic of the linear theory. It is shown that due to the kinematic nonlinearity such a simple structure no longer holds. Within the context of the discrete problem arising from a finite element formulation, explicit expressions for the residual and the tangent stiffness matrix are obtained for both penalty and Lagrangian parameter procedures.
UR - http://www.scopus.com/inward/record.url?scp=0022124645&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0022124645
VL - 1
SP - 199
EP - 203
JO - Communications in Numerical Methods in Engineering
JF - Communications in Numerical Methods in Engineering
SN - 1069-8299
IS - 5
ER -