Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 465-469 |
Seitenumfang | 5 |
Fachzeitschrift | Algebraic Combinatorics |
Jahrgang | 3 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 4 Jan. 2020 |
Extern publiziert | Ja |
Abstract
We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Algebraic Combinatorics, Jahrgang 3, Nr. 2, 04.01.2020, S. 465-469.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A note on non-reduced reflection factorizations of Coxeter elements
AU - Wegener, Patrick
AU - Yahiatene, Sophiane
PY - 2020/1/4
Y1 - 2020/1/4
N2 - We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.
AB - We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.
KW - Coxeter element
KW - Coxeter groups
KW - Hurwitz action
KW - Reflection factorizations
UR - http://www.scopus.com/inward/record.url?scp=85090528551&partnerID=8YFLogxK
U2 - 10.5802/alco.99
DO - 10.5802/alco.99
M3 - Article
VL - 3
SP - 465
EP - 469
JO - Algebraic Combinatorics
JF - Algebraic Combinatorics
IS - 2
ER -