A note on non-reduced reflection factorizations of Coxeter elements

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Universität Bielefeld
  • Technische Universität Kaiserslautern
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)465-469
Seitenumfang5
FachzeitschriftAlgebraic Combinatorics
Jahrgang3
Ausgabenummer2
PublikationsstatusVeröffentlicht - 4 Jan. 2020
Extern publiziertJa

Abstract

We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.

ASJC Scopus Sachgebiete

Zitieren

A note on non-reduced reflection factorizations of Coxeter elements. / Wegener, Patrick; Yahiatene, Sophiane.
in: Algebraic Combinatorics, Jahrgang 3, Nr. 2, 04.01.2020, S. 465-469.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Wegener, P & Yahiatene, S 2020, 'A note on non-reduced reflection factorizations of Coxeter elements', Algebraic Combinatorics, Jg. 3, Nr. 2, S. 465-469. https://doi.org/10.5802/alco.99
Wegener P, Yahiatene S. A note on non-reduced reflection factorizations of Coxeter elements. Algebraic Combinatorics. 2020 Jan 4;3(2):465-469. doi: 10.5802/alco.99
Wegener, Patrick ; Yahiatene, Sophiane. / A note on non-reduced reflection factorizations of Coxeter elements. in: Algebraic Combinatorics. 2020 ; Jahrgang 3, Nr. 2. S. 465-469.
Download
@article{6441fd66af7f4816b2eb4301d27dbafe,
title = "A note on non-reduced reflection factorizations of Coxeter elements",
abstract = "We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.",
keywords = "Coxeter element, Coxeter groups, Hurwitz action, Reflection factorizations",
author = "Patrick Wegener and Sophiane Yahiatene",
year = "2020",
month = jan,
day = "4",
doi = "10.5802/alco.99",
language = "English",
volume = "3",
pages = "465--469",
number = "2",

}

Download

TY - JOUR

T1 - A note on non-reduced reflection factorizations of Coxeter elements

AU - Wegener, Patrick

AU - Yahiatene, Sophiane

PY - 2020/1/4

Y1 - 2020/1/4

N2 - We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.

AB - We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.

KW - Coxeter element

KW - Coxeter groups

KW - Hurwitz action

KW - Reflection factorizations

UR - http://www.scopus.com/inward/record.url?scp=85090528551&partnerID=8YFLogxK

U2 - 10.5802/alco.99

DO - 10.5802/alco.99

M3 - Article

VL - 3

SP - 465

EP - 469

JO - Algebraic Combinatorics

JF - Algebraic Combinatorics

IS - 2

ER -

Von denselben Autoren