Loading [MathJax]/extensions/tex2jax.js

A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Mauricio Marcelo Terceros Almanza

Organisationseinheiten

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
  • Martin Achmus, Betreuer*in
Datum der Verleihung des Grades22 Juli 2021
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2021

Abstract

Die Offshore-Windtechnologie bietet ein großes Potenzial für die Versorgung mit erneuerbaren und sauberen Energien und ist daher eine potenzielle Alternative zur Nutzung fossiler Brennstoffe. Das Haupthindernis bei ihrer Umsetzung liegt in den hohen Investitionskosten. Eine effiziente Bemessung von Gründungen führt daher zu einer Kostenreduzierung, welche die wirtschaftliche Realisierbarkeit der Errichtung zukünftiger Windparks sicherstellt. Die vorliegende Arbeit soll dazu beitragen, die Bemessungsaspekte für Monopile-Gründungen unter lateraler Belastung in bindigen Böden zu optimieren. Für die geotechnische Bemessung lateral belasteter Pfähle werden die in den Offshore-Richtlinien wie API (2014) und DNVGL (2016) empfohlenen p-y-Ansätze aufgrund ihrer Einfachheit und Vielseitigkeit weitgehend angewendet. Eine Auswertung des horizontalen Tragverhaltens der in einen bindigen Boden eingebetteten Pfähle erfolgt, um eine umfassende Analyse des Bodenwiderstandes zu ermöglichen. In der Tat können Pfahlgründungen trotz des geringen Bodenwiderstandes vollständig in bindige Böden gegründet werden. Dennoch sind bei geschichteten Böden häufig auch bindige Bodenschichten anzutreffen. Für in bindigen Böden eingebettete Pfähle wird eine Differenzierung der p-y-Methoden anhand der Konsistenz vorgenommen, d. h. die von Matlock (1970) für weichen Ton und Reese et al. (1975) für steifen Ton vorgeschlagenen p-y-Methoden unterscheiden sich in ihrer Komplexität deutlich voneinander. Dennoch basieren die in den Richtlinien angegebenen p-y-Kurven lediglich auf dem exponentiellen Ansatz nach Matlock, wobei jeweils unterschiedliche Linearisierungen nach API (2014) und DNVGL (2016) zur allgemeinen Anwendung empfohlen werden. Diverse experimentelle und numerische Untersuchungen zeigen jedoch relevante Unzulänglichkeiten der beschriebenen Grundfunktion, um die Boden-Pfahl-Interaktion für Pfähle mit großem Durchmesser genau zu modellieren. In diesem Zusammenhang werden mehrere alternative p-y-Ansätze, die explizit den Effekt großer Durchmesser berücksichtigen sollen, bewertet. Eine umfangreiche Vergleichsstudie von statischen p-y-Ansätzen für weiche und steife Tone wird auf der Grundlage von mehr als 900 dreidimensionalen Simulationen mit der Finite-Elemente-Methode durchgeführt. Eine eindeutige Validierung des numerischen Modells wird mittels fünf in der Literatur eingeführter Feldversuche mit diversen Pfahldimensionen und Bodenbedingungen verwirklicht. In dem Wissen, dass sowohl die Ergebnisse des Ansatzes nach Matlock, die linearen Approximationen gemäß der API (2014) und der DNVGL (2016) Richtlinien als auch weitere alternative Ansätze für beliebige Pfahlgeometrie und Bodenbedingungen nicht generell gültig sind, ist ein neuer, allgemein anwendbarer p-y-Ansatz für bindigen Böden, basierend auf den Ergebnissen der numerischen Vergleichsstudie, in konsistenter Form entwickelt worden.

Ziele für nachhaltige Entwicklung

Zitieren

A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils. / Terceros Almanza, Mauricio Marcelo.
Hannover, 2021. 177 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Terceros Almanza, MM 2021, 'A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/11339
Terceros Almanza, M. M. (2021). A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/11339
Terceros Almanza MM. A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils. Hannover, 2021. 177 S. (Mitteilungen; 87). doi: 10.15488/11339
Download
@phdthesis{9cb1a81865cd44f7ab7a5d25d4d2bdcf,
title = "A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils",
abstract = "Offshore wind technology offers great potential to provide clean and renewable energy, representing a potential alternative to the use of fossil fuels. The main obstacle associated with its implementation is the high capital cost. An efficient foundation design consequently means a reduction in cost that ensures the economic feasibility of future wind farms. This thesis makes a contribution to the optimisation of monopile foundation design subjected to lateral loading conditions in cohesive soils. For the geotechnical design of laterally loaded piles, the p-y approaches according to offshore guidelines such as API (2014) and DNVGL (2016) are extensively used due to their simplicity and versatility. An assessment of the horizontal load-bearing behaviour of piles embedded in cohesive soil is carried out to account for a comprehensive analysis of soil resistance. Indeed, pile foundations can be completely founded on cohesive soil despite its low resistance. The layered soils are in any case frequently composed at least partially of cohesive soils. For piles embedded in cohesive soils, a differentiation of the p-y methods is established by means of the soil consistency, i.e. the p-y methods proposed by Matlock (1970) for soft clay and Reese et al. (1975) for stiff clay differ considerably in their complexity from each other. However, the p-y curves specified in the guidelines are based solely on the exponential function proposed by Matlock, whereby different linearisations are recommended by API (2014) and DNVGL (2016) for its general application. Various experimental and numerical investigations demonstrate, however, considerable inadequacies of the stated basic function to accurately model the behaviour of the pile-soil interaction for large-diameter piles. In this sense, several alternative p-y approaches, which explicitly intend to account for the effect of large-diameter piles, are assessed. An extensive comparative study of static p-y approaches with respect to soft and stiff clays as well as unified p-y methods is conducted based on more than 900 three-dimensional simulations using the finite element method. A conclusive validation of the numerical model is accomplished by five field tests introduced in the literature with various pile geometries and soil conditions. Taking into consideration that the results of the p-y approach according to Matlock, the linear approximation according to the API (2014), and the DNVGL (2016) guidelines as well as further alternative approaches are not generally valid for arbitrary pile geometries and soil conditions, a new, generally applicable p-y approach for cohesive soils is developed in a consistent manner, based on the findings from the numerical comparative study.",
author = "{Terceros Almanza}, {Mauricio Marcelo}",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/11339",
language = "English",
series = "Mitteilungen",
publisher = "Gottfried Wilhelm Leibniz Universit{\"a}t Hannover Institut f{\"u}r Geotechnik",
number = "87",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - A new p-y approach to pile foundations with arbitrary dimensions under monotonic load in cohesive soils

AU - Terceros Almanza, Mauricio Marcelo

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - Offshore wind technology offers great potential to provide clean and renewable energy, representing a potential alternative to the use of fossil fuels. The main obstacle associated with its implementation is the high capital cost. An efficient foundation design consequently means a reduction in cost that ensures the economic feasibility of future wind farms. This thesis makes a contribution to the optimisation of monopile foundation design subjected to lateral loading conditions in cohesive soils. For the geotechnical design of laterally loaded piles, the p-y approaches according to offshore guidelines such as API (2014) and DNVGL (2016) are extensively used due to their simplicity and versatility. An assessment of the horizontal load-bearing behaviour of piles embedded in cohesive soil is carried out to account for a comprehensive analysis of soil resistance. Indeed, pile foundations can be completely founded on cohesive soil despite its low resistance. The layered soils are in any case frequently composed at least partially of cohesive soils. For piles embedded in cohesive soils, a differentiation of the p-y methods is established by means of the soil consistency, i.e. the p-y methods proposed by Matlock (1970) for soft clay and Reese et al. (1975) for stiff clay differ considerably in their complexity from each other. However, the p-y curves specified in the guidelines are based solely on the exponential function proposed by Matlock, whereby different linearisations are recommended by API (2014) and DNVGL (2016) for its general application. Various experimental and numerical investigations demonstrate, however, considerable inadequacies of the stated basic function to accurately model the behaviour of the pile-soil interaction for large-diameter piles. In this sense, several alternative p-y approaches, which explicitly intend to account for the effect of large-diameter piles, are assessed. An extensive comparative study of static p-y approaches with respect to soft and stiff clays as well as unified p-y methods is conducted based on more than 900 three-dimensional simulations using the finite element method. A conclusive validation of the numerical model is accomplished by five field tests introduced in the literature with various pile geometries and soil conditions. Taking into consideration that the results of the p-y approach according to Matlock, the linear approximation according to the API (2014), and the DNVGL (2016) guidelines as well as further alternative approaches are not generally valid for arbitrary pile geometries and soil conditions, a new, generally applicable p-y approach for cohesive soils is developed in a consistent manner, based on the findings from the numerical comparative study.

AB - Offshore wind technology offers great potential to provide clean and renewable energy, representing a potential alternative to the use of fossil fuels. The main obstacle associated with its implementation is the high capital cost. An efficient foundation design consequently means a reduction in cost that ensures the economic feasibility of future wind farms. This thesis makes a contribution to the optimisation of monopile foundation design subjected to lateral loading conditions in cohesive soils. For the geotechnical design of laterally loaded piles, the p-y approaches according to offshore guidelines such as API (2014) and DNVGL (2016) are extensively used due to their simplicity and versatility. An assessment of the horizontal load-bearing behaviour of piles embedded in cohesive soil is carried out to account for a comprehensive analysis of soil resistance. Indeed, pile foundations can be completely founded on cohesive soil despite its low resistance. The layered soils are in any case frequently composed at least partially of cohesive soils. For piles embedded in cohesive soils, a differentiation of the p-y methods is established by means of the soil consistency, i.e. the p-y methods proposed by Matlock (1970) for soft clay and Reese et al. (1975) for stiff clay differ considerably in their complexity from each other. However, the p-y curves specified in the guidelines are based solely on the exponential function proposed by Matlock, whereby different linearisations are recommended by API (2014) and DNVGL (2016) for its general application. Various experimental and numerical investigations demonstrate, however, considerable inadequacies of the stated basic function to accurately model the behaviour of the pile-soil interaction for large-diameter piles. In this sense, several alternative p-y approaches, which explicitly intend to account for the effect of large-diameter piles, are assessed. An extensive comparative study of static p-y approaches with respect to soft and stiff clays as well as unified p-y methods is conducted based on more than 900 three-dimensional simulations using the finite element method. A conclusive validation of the numerical model is accomplished by five field tests introduced in the literature with various pile geometries and soil conditions. Taking into consideration that the results of the p-y approach according to Matlock, the linear approximation according to the API (2014), and the DNVGL (2016) guidelines as well as further alternative approaches are not generally valid for arbitrary pile geometries and soil conditions, a new, generally applicable p-y approach for cohesive soils is developed in a consistent manner, based on the findings from the numerical comparative study.

U2 - 10.15488/11339

DO - 10.15488/11339

M3 - Doctoral thesis

T3 - Mitteilungen

CY - Hannover

ER -