Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 16500090 |
Seitenumfang | 24 |
Fachzeitschrift | Journal of Micromechanics and Molecular Physics |
Jahrgang | 1 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 23 Aug. 2016 |
Abstract
We propose a new peridynamic formulation with shear deformation for linear elastic solid. The key idea lies in subtracting the rigid body rotation part from the total deformation. Based on the strain energy equivalence between classic local model and non-local model, the bond force vector is derived. A new damage rule of maximal deviatoric bond strain for elastic brittle fracture is proposed in order to account for both the tensile damage and shear damage. 2D and 3D numerical examples are tested to verify the accuracy of the current peridynamics. The new damage rule is applied to simulate the propagation of Mode I, II and III cracks.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Werkstoffwissenschaften (insg.)
- Keramische und Verbundwerkstoffe
- Werkstoffwissenschaften (insg.)
- Polymere und Kunststoffe
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Micromechanics and Molecular Physics, Jahrgang 1, Nr. 2, 16500090, 23.08.2016.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A new peridynamic formulation with shear deformation for elastic solid
AU - Ren, Huilong
AU - Zhuang, Xiaoying
AU - Rabczuk, Timon
N1 - Funding Information: The authors acknowledge the supports from the European Union through the ERC grant for COMBAT project and IIF-HYDROFRAC (623667), the National Basic Research Program of China (973 Program: 2011CB013800) and NSFC (51474157) and the Ministry of Science and Technology of China (Grant No. SLDRCE14-B-28, SLDRCE14-B-31).
PY - 2016/8/23
Y1 - 2016/8/23
N2 - We propose a new peridynamic formulation with shear deformation for linear elastic solid. The key idea lies in subtracting the rigid body rotation part from the total deformation. Based on the strain energy equivalence between classic local model and non-local model, the bond force vector is derived. A new damage rule of maximal deviatoric bond strain for elastic brittle fracture is proposed in order to account for both the tensile damage and shear damage. 2D and 3D numerical examples are tested to verify the accuracy of the current peridynamics. The new damage rule is applied to simulate the propagation of Mode I, II and III cracks.
AB - We propose a new peridynamic formulation with shear deformation for linear elastic solid. The key idea lies in subtracting the rigid body rotation part from the total deformation. Based on the strain energy equivalence between classic local model and non-local model, the bond force vector is derived. A new damage rule of maximal deviatoric bond strain for elastic brittle fracture is proposed in order to account for both the tensile damage and shear damage. 2D and 3D numerical examples are tested to verify the accuracy of the current peridynamics. The new damage rule is applied to simulate the propagation of Mode I, II and III cracks.
KW - cond-mat.soft
KW - cond-mat.mtrl-sci
KW - Mode III crack
KW - Brittle fracture
KW - Shear deformation
KW - Mode II crack
KW - Shear damage
KW - Dual-horizon
KW - Mode I crack
KW - Horizon variable
UR - http://www.scopus.com/inward/record.url?scp=85007358950&partnerID=8YFLogxK
U2 - 10.1142/S2424913016500090
DO - 10.1142/S2424913016500090
M3 - Article
VL - 1
JO - Journal of Micromechanics and Molecular Physics
JF - Journal of Micromechanics and Molecular Physics
IS - 2
M1 - 16500090
ER -