A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksLogic, Language, Information, and Computation
Untertitel23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings
Herausgeber/-innenJouko Väänänen, Åsa Hirvonen, Ruy de Queiroz
ErscheinungsortBerlin
Herausgeber (Verlag)Springer Verlag
Seiten234-248
Seitenumfang15
ISBN (elektronisch)978-3-662-52921-8
ISBN (Print)9783662529201
PublikationsstatusVeröffentlicht - 6 Aug. 2016

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9803 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Abstract

We study the class #AC 0 of functions computed by constantdepth polynomial-size arithmetic circuits of unbounded fan-in addition and multiplication gates. No model-theoretic characterization for arithmetic circuit classes is known so far. Inspired by Immerman’s characterization of the Boolean class AC 0, we remedy this situation and develop such a characterization of #AC 0. Our characterization can be interpreted as follows: Functions in #AC 0 are exactly those functions counting winning strategies in first-order model checking games. A consequence of our results is a new model-theoretic characterization of TC 0, the class of languages accepted by constant-depth polynomial-size majority circuits.

Zitieren

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits. / Haak, Anselm; Vollmer, Heribert.
Logic, Language, Information, and Computation: 23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings. Hrsg. / Jouko Väänänen; Åsa Hirvonen; Ruy de Queiroz. Berlin: Springer Verlag, 2016. S. 234-248 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 9803 LNCS).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Haak, A & Vollmer, H 2016, A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits. in J Väänänen, Å Hirvonen & R de Queiroz (Hrsg.), Logic, Language, Information, and Computation: 23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Bd. 9803 LNCS, Springer Verlag, Berlin, S. 234-248. https://doi.org/10.48550/arXiv.1603.09531, https://doi.org/10.1007/978-3-662-52921-8_15
Haak, A., & Vollmer, H. (2016). A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits. In J. Väänänen, Å. Hirvonen, & R. de Queiroz (Hrsg.), Logic, Language, Information, and Computation: 23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings (S. 234-248). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 9803 LNCS). Springer Verlag. https://doi.org/10.48550/arXiv.1603.09531, https://doi.org/10.1007/978-3-662-52921-8_15
Haak A, Vollmer H. A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits. in Väänänen J, Hirvonen Å, de Queiroz R, Hrsg., Logic, Language, Information, and Computation: 23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings. Berlin: Springer Verlag. 2016. S. 234-248. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.48550/arXiv.1603.09531, 10.1007/978-3-662-52921-8_15
Haak, Anselm ; Vollmer, Heribert. / A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits. Logic, Language, Information, and Computation: 23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings. Hrsg. / Jouko Väänänen ; Åsa Hirvonen ; Ruy de Queiroz. Berlin : Springer Verlag, 2016. S. 234-248 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
Download
@inproceedings{986babc3be1040c9bc545213cfbe99f6,
title = "A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits",
abstract = "We study the class #AC 0 of functions computed by constantdepth polynomial-size arithmetic circuits of unbounded fan-in addition and multiplication gates. No model-theoretic characterization for arithmetic circuit classes is known so far. Inspired by Immerman{\textquoteright}s characterization of the Boolean class AC 0, we remedy this situation and develop such a characterization of #AC 0. Our characterization can be interpreted as follows: Functions in #AC 0 are exactly those functions counting winning strategies in first-order model checking games. A consequence of our results is a new model-theoretic characterization of TC 0, the class of languages accepted by constant-depth polynomial-size majority circuits.",
author = "Anselm Haak and Heribert Vollmer",
note = "Funding Information: Supported by DFG grant VO 630/8-1.",
year = "2016",
month = aug,
day = "6",
doi = "10.48550/arXiv.1603.09531",
language = "English",
isbn = "9783662529201",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "234--248",
editor = "Jouko V{\"a}{\"a}n{\"a}nen and {\AA}sa Hirvonen and {de Queiroz}, Ruy",
booktitle = "Logic, Language, Information, and Computation",
address = "Germany",

}

Download

TY - GEN

T1 - A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits

AU - Haak, Anselm

AU - Vollmer, Heribert

N1 - Funding Information: Supported by DFG grant VO 630/8-1.

PY - 2016/8/6

Y1 - 2016/8/6

N2 - We study the class #AC 0 of functions computed by constantdepth polynomial-size arithmetic circuits of unbounded fan-in addition and multiplication gates. No model-theoretic characterization for arithmetic circuit classes is known so far. Inspired by Immerman’s characterization of the Boolean class AC 0, we remedy this situation and develop such a characterization of #AC 0. Our characterization can be interpreted as follows: Functions in #AC 0 are exactly those functions counting winning strategies in first-order model checking games. A consequence of our results is a new model-theoretic characterization of TC 0, the class of languages accepted by constant-depth polynomial-size majority circuits.

AB - We study the class #AC 0 of functions computed by constantdepth polynomial-size arithmetic circuits of unbounded fan-in addition and multiplication gates. No model-theoretic characterization for arithmetic circuit classes is known so far. Inspired by Immerman’s characterization of the Boolean class AC 0, we remedy this situation and develop such a characterization of #AC 0. Our characterization can be interpreted as follows: Functions in #AC 0 are exactly those functions counting winning strategies in first-order model checking games. A consequence of our results is a new model-theoretic characterization of TC 0, the class of languages accepted by constant-depth polynomial-size majority circuits.

UR - http://www.scopus.com/inward/record.url?scp=84981526539&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1603.09531

DO - 10.48550/arXiv.1603.09531

M3 - Conference contribution

SN - 9783662529201

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 234

EP - 248

BT - Logic, Language, Information, and Computation

A2 - Väänänen, Jouko

A2 - Hirvonen, Åsa

A2 - de Queiroz, Ruy

PB - Springer Verlag

CY - Berlin

ER -

Von denselben Autoren