A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Mark A. Bewernitz
  • Denis Gebauer
  • Joanna Long
  • Helmut Cölfen
  • Laurie B. Gower

Externe Organisationen

  • University of Florida
  • Universität Konstanz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)291-312
Seitenumfang22
FachzeitschriftFaraday discussions
Jahrgang159
PublikationsstatusVeröffentlicht - 2012
Extern publiziertJa

Abstract

Invertebrate organisms that use calcium carbonate extensively in the formation of their hard tissues have the ability to deposit biominerals with control over crystal size, shape, orientation, phase, texture, and location. It has been proposed by our group that charged polyelectrolytes, like acidic proteins, may be employed by organisms to direct crystal growth through an intermediate liquid phase in a process called the polymer-induced liquid-precursor (PILP) process. Recently, it has been proposed that calcium carbonate crystallization, even in the absence of any additives, follows a non-classical, multi-step crystallization process by first associating into a liquid precursor phase before transition into solid amorphous calcium carbonate (ACC) and eventually crystalline calcium carbonates. In order to determine if the PILP process involves the promotion, or stabilization, of a naturally occurring liquid precursor to ACC, we have analyzed the formation of saturated and supersaturated calcium carbonate-bicarbonate solutions using Ca 2+ ion selective electrodes, pH electrodes, isothermal titration calorimetry, nanoparticle tracking analysis, 13C T 2 relaxation measurements, and 13C PFG-STE diffusion NMR measurements. These studies provide evidence that, in the absences of additives, and at near neutral pH (emulating the conditions of biomineralization and biomimetic model systems), a condensed phase of liquid-like droplets of calcium carbonate forms at a critical concentration, where it is stabilized intrinsically by bicarbonate ions. In experiments with polymer additive, the data suggests that the polymer is kinetically stabilizing this liquid condensed phase in a distinct and pronounced fashion during the so called PILP process. Verification of this precursor phase and the stabilization that polymer additives provide during the PILP process sheds new light on the mechanism through which biological organisms can exercise such control over deposited CaCO 3 biominerals, and on the potential means to generate in vitro mineral products with features that resemble biominerals seen in nature.

ASJC Scopus Sachgebiete

Zitieren

A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. / Bewernitz, Mark A.; Gebauer, Denis; Long, Joanna et al.
in: Faraday discussions, Jahrgang 159, 2012, S. 291-312.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bewernitz MA, Gebauer D, Long J, Cölfen H, Gower LB. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday discussions. 2012;159:291-312. doi: 10.1039/c2fd20080e
Download
@article{74cf831754474ddd949e54d40161970a,
title = "A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate",
abstract = "Invertebrate organisms that use calcium carbonate extensively in the formation of their hard tissues have the ability to deposit biominerals with control over crystal size, shape, orientation, phase, texture, and location. It has been proposed by our group that charged polyelectrolytes, like acidic proteins, may be employed by organisms to direct crystal growth through an intermediate liquid phase in a process called the polymer-induced liquid-precursor (PILP) process. Recently, it has been proposed that calcium carbonate crystallization, even in the absence of any additives, follows a non-classical, multi-step crystallization process by first associating into a liquid precursor phase before transition into solid amorphous calcium carbonate (ACC) and eventually crystalline calcium carbonates. In order to determine if the PILP process involves the promotion, or stabilization, of a naturally occurring liquid precursor to ACC, we have analyzed the formation of saturated and supersaturated calcium carbonate-bicarbonate solutions using Ca 2+ ion selective electrodes, pH electrodes, isothermal titration calorimetry, nanoparticle tracking analysis, 13C T 2 relaxation measurements, and 13C PFG-STE diffusion NMR measurements. These studies provide evidence that, in the absences of additives, and at near neutral pH (emulating the conditions of biomineralization and biomimetic model systems), a condensed phase of liquid-like droplets of calcium carbonate forms at a critical concentration, where it is stabilized intrinsically by bicarbonate ions. In experiments with polymer additive, the data suggests that the polymer is kinetically stabilizing this liquid condensed phase in a distinct and pronounced fashion during the so called PILP process. Verification of this precursor phase and the stabilization that polymer additives provide during the PILP process sheds new light on the mechanism through which biological organisms can exercise such control over deposited CaCO 3 biominerals, and on the potential means to generate in vitro mineral products with features that resemble biominerals seen in nature.",
author = "Bewernitz, {Mark A.} and Denis Gebauer and Joanna Long and Helmut C{\"o}lfen and Gower, {Laurie B.}",
year = "2012",
doi = "10.1039/c2fd20080e",
language = "English",
volume = "159",
pages = "291--312",
journal = "Faraday discussions",
issn = "1359-6640",
publisher = "Royal Society of Chemistry",

}

Download

TY - JOUR

T1 - A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate

AU - Bewernitz, Mark A.

AU - Gebauer, Denis

AU - Long, Joanna

AU - Cölfen, Helmut

AU - Gower, Laurie B.

PY - 2012

Y1 - 2012

N2 - Invertebrate organisms that use calcium carbonate extensively in the formation of their hard tissues have the ability to deposit biominerals with control over crystal size, shape, orientation, phase, texture, and location. It has been proposed by our group that charged polyelectrolytes, like acidic proteins, may be employed by organisms to direct crystal growth through an intermediate liquid phase in a process called the polymer-induced liquid-precursor (PILP) process. Recently, it has been proposed that calcium carbonate crystallization, even in the absence of any additives, follows a non-classical, multi-step crystallization process by first associating into a liquid precursor phase before transition into solid amorphous calcium carbonate (ACC) and eventually crystalline calcium carbonates. In order to determine if the PILP process involves the promotion, or stabilization, of a naturally occurring liquid precursor to ACC, we have analyzed the formation of saturated and supersaturated calcium carbonate-bicarbonate solutions using Ca 2+ ion selective electrodes, pH electrodes, isothermal titration calorimetry, nanoparticle tracking analysis, 13C T 2 relaxation measurements, and 13C PFG-STE diffusion NMR measurements. These studies provide evidence that, in the absences of additives, and at near neutral pH (emulating the conditions of biomineralization and biomimetic model systems), a condensed phase of liquid-like droplets of calcium carbonate forms at a critical concentration, where it is stabilized intrinsically by bicarbonate ions. In experiments with polymer additive, the data suggests that the polymer is kinetically stabilizing this liquid condensed phase in a distinct and pronounced fashion during the so called PILP process. Verification of this precursor phase and the stabilization that polymer additives provide during the PILP process sheds new light on the mechanism through which biological organisms can exercise such control over deposited CaCO 3 biominerals, and on the potential means to generate in vitro mineral products with features that resemble biominerals seen in nature.

AB - Invertebrate organisms that use calcium carbonate extensively in the formation of their hard tissues have the ability to deposit biominerals with control over crystal size, shape, orientation, phase, texture, and location. It has been proposed by our group that charged polyelectrolytes, like acidic proteins, may be employed by organisms to direct crystal growth through an intermediate liquid phase in a process called the polymer-induced liquid-precursor (PILP) process. Recently, it has been proposed that calcium carbonate crystallization, even in the absence of any additives, follows a non-classical, multi-step crystallization process by first associating into a liquid precursor phase before transition into solid amorphous calcium carbonate (ACC) and eventually crystalline calcium carbonates. In order to determine if the PILP process involves the promotion, or stabilization, of a naturally occurring liquid precursor to ACC, we have analyzed the formation of saturated and supersaturated calcium carbonate-bicarbonate solutions using Ca 2+ ion selective electrodes, pH electrodes, isothermal titration calorimetry, nanoparticle tracking analysis, 13C T 2 relaxation measurements, and 13C PFG-STE diffusion NMR measurements. These studies provide evidence that, in the absences of additives, and at near neutral pH (emulating the conditions of biomineralization and biomimetic model systems), a condensed phase of liquid-like droplets of calcium carbonate forms at a critical concentration, where it is stabilized intrinsically by bicarbonate ions. In experiments with polymer additive, the data suggests that the polymer is kinetically stabilizing this liquid condensed phase in a distinct and pronounced fashion during the so called PILP process. Verification of this precursor phase and the stabilization that polymer additives provide during the PILP process sheds new light on the mechanism through which biological organisms can exercise such control over deposited CaCO 3 biominerals, and on the potential means to generate in vitro mineral products with features that resemble biominerals seen in nature.

UR - http://www.scopus.com/inward/record.url?scp=84867977299&partnerID=8YFLogxK

U2 - 10.1039/c2fd20080e

DO - 10.1039/c2fd20080e

M3 - Article

AN - SCOPUS:84867977299

VL - 159

SP - 291

EP - 312

JO - Faraday discussions

JF - Faraday discussions

SN - 1359-6640

ER -

Von denselben Autoren