Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 3002-3020 |
Seitenumfang | 19 |
Fachzeitschrift | Mathematical Methods in the Applied Sciences |
Jahrgang | 42 |
Ausgabenummer | 9 |
Publikationsstatus | Veröffentlicht - 6 Mai 2019 |
Extern publiziert | Ja |
Abstract
In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematical Methods in the Applied Sciences, Jahrgang 42, Nr. 9, 06.05.2019, S. 3002-3020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A Keller‐Segel‐fluid system with singular sensitivity
T2 - Generalized solutions
AU - Black, Tobias
AU - Lankeit, Johannes
AU - Mizukami, Masaaki
N1 - Funding Information: TB and JL acknowledge support of the Deutsche Forschungsgemeinschaft within the project Analysis of chemotactic cross-diffusion in complex frameworks (project no. 288366228). MM is funded by JSPS Research Fellowships for Young Scientists (No. 17J00101). A major part of this work was written during joint stays at Universität Paderborn and Tokyo University of Science under support from Tokyo University of Science.
PY - 2019/5/6
Y1 - 2019/5/6
N2 - In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.
AB - In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.
KW - Keller-Segel system
KW - Stokes equation
KW - chemotaxis-fluid
KW - global existence
KW - singular sensitivity
UR - http://www.scopus.com/inward/record.url?scp=85065245326&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1805.09085
DO - 10.48550/arXiv.1805.09085
M3 - Article
VL - 42
SP - 3002
EP - 3020
JO - Mathematical Methods in the Applied Sciences
JF - Mathematical Methods in the Applied Sciences
SN - 0170-4214
IS - 9
ER -