A Keller‐Segel‐fluid system with singular sensitivity: Generalized solutions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Tobias Black
  • Johannes Lankeit
  • Masaaki Mizukami

Externe Organisationen

  • Universität Paderborn
  • Tokyo University of Science
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)3002-3020
Seitenumfang19
FachzeitschriftMathematical Methods in the Applied Sciences
Jahrgang42
Ausgabenummer9
PublikationsstatusVeröffentlicht - 6 Mai 2019
Extern publiziertJa

Abstract

In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.

ASJC Scopus Sachgebiete

Zitieren

A Keller‐Segel‐fluid system with singular sensitivity: Generalized solutions. / Black, Tobias; Lankeit, Johannes; Mizukami, Masaaki.
in: Mathematical Methods in the Applied Sciences, Jahrgang 42, Nr. 9, 06.05.2019, S. 3002-3020.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Black T, Lankeit J, Mizukami M. A Keller‐Segel‐fluid system with singular sensitivity: Generalized solutions. Mathematical Methods in the Applied Sciences. 2019 Mai 6;42(9):3002-3020. doi: 10.48550/arXiv.1805.09085, 10.1002/mma.5561
Black, Tobias ; Lankeit, Johannes ; Mizukami, Masaaki. / A Keller‐Segel‐fluid system with singular sensitivity : Generalized solutions. in: Mathematical Methods in the Applied Sciences. 2019 ; Jahrgang 42, Nr. 9. S. 3002-3020.
Download
@article{cf637491e4b84288981ae8dab166999d,
title = "A Keller‐Segel‐fluid system with singular sensitivity: Generalized solutions",
abstract = "In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.",
keywords = "Keller-Segel system, Stokes equation, chemotaxis-fluid, global existence, singular sensitivity",
author = "Tobias Black and Johannes Lankeit and Masaaki Mizukami",
note = "Funding Information: TB and JL acknowledge support of the Deutsche Forschungsgemeinschaft within the project Analysis of chemotactic cross-diffusion in complex frameworks (project no. 288366228). MM is funded by JSPS Research Fellowships for Young Scientists (No. 17J00101). A major part of this work was written during joint stays at Universit{\"a}t Paderborn and Tokyo University of Science under support from Tokyo University of Science.",
year = "2019",
month = may,
day = "6",
doi = "10.48550/arXiv.1805.09085",
language = "English",
volume = "42",
pages = "3002--3020",
journal = "Mathematical Methods in the Applied Sciences",
issn = "0170-4214",
publisher = "John Wiley and Sons Ltd",
number = "9",

}

Download

TY - JOUR

T1 - A Keller‐Segel‐fluid system with singular sensitivity

T2 - Generalized solutions

AU - Black, Tobias

AU - Lankeit, Johannes

AU - Mizukami, Masaaki

N1 - Funding Information: TB and JL acknowledge support of the Deutsche Forschungsgemeinschaft within the project Analysis of chemotactic cross-diffusion in complex frameworks (project no. 288366228). MM is funded by JSPS Research Fellowships for Young Scientists (No. 17J00101). A major part of this work was written during joint stays at Universität Paderborn and Tokyo University of Science under support from Tokyo University of Science.

PY - 2019/5/6

Y1 - 2019/5/6

N2 - In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.

AB - In bounded smooth domains Ω ⊂ R N, N ∈ {2,3}, we consider the Keller-Segel-Stokes system (Formula presented.) and prove global existence of generalized solutions if (Formula presented.) These solutions are such that blow-up into a persistent Dirac-type singularity is excluded.

KW - Keller-Segel system

KW - Stokes equation

KW - chemotaxis-fluid

KW - global existence

KW - singular sensitivity

UR - http://www.scopus.com/inward/record.url?scp=85065245326&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1805.09085

DO - 10.48550/arXiv.1805.09085

M3 - Article

VL - 42

SP - 3002

EP - 3020

JO - Mathematical Methods in the Applied Sciences

JF - Mathematical Methods in the Applied Sciences

SN - 0170-4214

IS - 9

ER -