Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 69-78 |
Seitenumfang | 10 |
Fachzeitschrift | Energy Harvesting and Systems |
Jahrgang | 1 |
Ausgabenummer | 1-2 |
Frühes Online-Datum | 7 Mai 2014 |
Publikationsstatus | Veröffentlicht - 1 Juni 2014 |
Abstract
The thermoelectric energy conversion is described in terms of fluxes of extensive variables entropy and charge, which gives a clear meaning to the figure of merit and to the power factor. Strength and sign of coupling of entropy current and electrical current is decisive for the function of a thermoelectric generator, which was built from n-type and p-type oxide ceramics to be suitable for the high-temperature range. For n-type and p-type legs, Zn0.98Al0.02O and Ca3Co4O9-derived ceramics, respectively, were used. Microstructure of both materials was investigated to some detail by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy including elemental analysis. N-type Zn0.98Al0.02O shows sub-micrometre precipitates of ZnAl2O4 spinel. P-type Ca3Co4O9-derived ceramic is a multi-phase composite as the starting powder decomposed partly during sintering. The thermoelectric materials show different temperature slopes of the power factor with the p-type material reaching 1.8 mW cm-1 K-2 at 1,000 K and the n-type reaching 1.6 mW cm-1 K-2 at 1,050 K. For the 10-leg thermoelectric generator, a figure of merit of zT = 0.10 was estimated at maximum electrical power output when the hot side was at 1,023 K, and a temperature difference of 200 K was applied.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
- Chemie (insg.)
- Elektrochemie
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Energy Harvesting and Systems, Jahrgang 1, Nr. 1-2, 01.06.2014, S. 69-78.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A High-Temperature Thermoelectric Generator Based on Oxides
AU - Feldhoff, Armin
AU - Geppert, Benjamin
N1 - Publisher Copyright: © 2014 Walter de Gruyter GmbH. All rights reserved.
PY - 2014/6/1
Y1 - 2014/6/1
N2 - The thermoelectric energy conversion is described in terms of fluxes of extensive variables entropy and charge, which gives a clear meaning to the figure of merit and to the power factor. Strength and sign of coupling of entropy current and electrical current is decisive for the function of a thermoelectric generator, which was built from n-type and p-type oxide ceramics to be suitable for the high-temperature range. For n-type and p-type legs, Zn0.98Al0.02O and Ca3Co4O9-derived ceramics, respectively, were used. Microstructure of both materials was investigated to some detail by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy including elemental analysis. N-type Zn0.98Al0.02O shows sub-micrometre precipitates of ZnAl2O4 spinel. P-type Ca3Co4O9-derived ceramic is a multi-phase composite as the starting powder decomposed partly during sintering. The thermoelectric materials show different temperature slopes of the power factor with the p-type material reaching 1.8 mW cm-1 K-2 at 1,000 K and the n-type reaching 1.6 mW cm-1 K-2 at 1,050 K. For the 10-leg thermoelectric generator, a figure of merit of zT = 0.10 was estimated at maximum electrical power output when the hot side was at 1,023 K, and a temperature difference of 200 K was applied.
AB - The thermoelectric energy conversion is described in terms of fluxes of extensive variables entropy and charge, which gives a clear meaning to the figure of merit and to the power factor. Strength and sign of coupling of entropy current and electrical current is decisive for the function of a thermoelectric generator, which was built from n-type and p-type oxide ceramics to be suitable for the high-temperature range. For n-type and p-type legs, Zn0.98Al0.02O and Ca3Co4O9-derived ceramics, respectively, were used. Microstructure of both materials was investigated to some detail by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy including elemental analysis. N-type Zn0.98Al0.02O shows sub-micrometre precipitates of ZnAl2O4 spinel. P-type Ca3Co4O9-derived ceramic is a multi-phase composite as the starting powder decomposed partly during sintering. The thermoelectric materials show different temperature slopes of the power factor with the p-type material reaching 1.8 mW cm-1 K-2 at 1,000 K and the n-type reaching 1.6 mW cm-1 K-2 at 1,050 K. For the 10-leg thermoelectric generator, a figure of merit of zT = 0.10 was estimated at maximum electrical power output when the hot side was at 1,023 K, and a temperature difference of 200 K was applied.
KW - entropy conductivity
KW - figure of merit
KW - high temperature
KW - oxides
KW - thermoelectric module
UR - http://www.scopus.com/inward/record.url?scp=85126369239&partnerID=8YFLogxK
U2 - 10.1515/ehs-2014-0003
DO - 10.1515/ehs-2014-0003
M3 - Article
AN - SCOPUS:85126369239
VL - 1
SP - 69
EP - 78
JO - Energy Harvesting and Systems
JF - Energy Harvesting and Systems
SN - 2329-8774
IS - 1-2
ER -