A highly active perovskite electrode for the oxygen reduction reaction below 600 °c

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wei Zhou
  • Jaka Sunarso
  • Mingwen Zhao
  • Fengli Liang
  • Tobias Klande
  • Armin Feldhoff

Externe Organisationen

  • University of Queensland
  • Deakin University
  • University of Waterloo
  • Shandong University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)14036-14040
Seitenumfang5
FachzeitschriftAngewandte Chemie - International Edition
Jahrgang52
Ausgabenummer52
Frühes Online-Datum13 Nov. 2013
PublikationsstatusVeröffentlicht - 23 Dez. 2013

Abstract

The novel perovskite material, SrSc0.175Nb 0.025Co0.8O3-δ, shows a rapid bulk oxygen diffusion rate below 550 °C (see oxygen movement indicated by the black arrow). Incorporation as an oxygen reduction cathode into a samarium-doped ceria fuel cell enables exceptionally high electrochemical performance, indicated by a power density of 910 mW cm-2 at 500 °C.

ASJC Scopus Sachgebiete

Zitieren

A highly active perovskite electrode for the oxygen reduction reaction below 600 °c. / Zhou, Wei; Sunarso, Jaka; Zhao, Mingwen et al.
in: Angewandte Chemie - International Edition, Jahrgang 52, Nr. 52, 23.12.2013, S. 14036-14040.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Zhou W, Sunarso J, Zhao M, Liang F, Klande T, Feldhoff A. A highly active perovskite electrode for the oxygen reduction reaction below 600 °c. Angewandte Chemie - International Edition. 2013 Dez 23;52(52):14036-14040. Epub 2013 Nov 13. doi: 10.1002/anie.201307305
Zhou, Wei ; Sunarso, Jaka ; Zhao, Mingwen et al. / A highly active perovskite electrode for the oxygen reduction reaction below 600 °c. in: Angewandte Chemie - International Edition. 2013 ; Jahrgang 52, Nr. 52. S. 14036-14040.
Download
@article{3196afda539d43d8940ea9d3e2654a1f,
title = "A highly active perovskite electrode for the oxygen reduction reaction below 600 °c",
abstract = "The novel perovskite material, SrSc0.175Nb 0.025Co0.8O3-δ, shows a rapid bulk oxygen diffusion rate below 550 °C (see oxygen movement indicated by the black arrow). Incorporation as an oxygen reduction cathode into a samarium-doped ceria fuel cell enables exceptionally high electrochemical performance, indicated by a power density of 910 mW cm-2 at 500 °C.",
keywords = "cathode material, electrochemistry, oxygen reduction reaction, perovskite, solid oxide fuel cells",
author = "Wei Zhou and Jaka Sunarso and Mingwen Zhao and Fengli Liang and Tobias Klande and Armin Feldhoff",
year = "2013",
month = dec,
day = "23",
doi = "10.1002/anie.201307305",
language = "English",
volume = "52",
pages = "14036--14040",
journal = "Angewandte Chemie - International Edition",
issn = "1433-7851",
publisher = "John Wiley and Sons Ltd",
number = "52",

}

Download

TY - JOUR

T1 - A highly active perovskite electrode for the oxygen reduction reaction below 600 °c

AU - Zhou, Wei

AU - Sunarso, Jaka

AU - Zhao, Mingwen

AU - Liang, Fengli

AU - Klande, Tobias

AU - Feldhoff, Armin

PY - 2013/12/23

Y1 - 2013/12/23

N2 - The novel perovskite material, SrSc0.175Nb 0.025Co0.8O3-δ, shows a rapid bulk oxygen diffusion rate below 550 °C (see oxygen movement indicated by the black arrow). Incorporation as an oxygen reduction cathode into a samarium-doped ceria fuel cell enables exceptionally high electrochemical performance, indicated by a power density of 910 mW cm-2 at 500 °C.

AB - The novel perovskite material, SrSc0.175Nb 0.025Co0.8O3-δ, shows a rapid bulk oxygen diffusion rate below 550 °C (see oxygen movement indicated by the black arrow). Incorporation as an oxygen reduction cathode into a samarium-doped ceria fuel cell enables exceptionally high electrochemical performance, indicated by a power density of 910 mW cm-2 at 500 °C.

KW - cathode material

KW - electrochemistry

KW - oxygen reduction reaction

KW - perovskite

KW - solid oxide fuel cells

UR - http://www.scopus.com/inward/record.url?scp=84890609709&partnerID=8YFLogxK

U2 - 10.1002/anie.201307305

DO - 10.1002/anie.201307305

M3 - Article

AN - SCOPUS:84890609709

VL - 52

SP - 14036

EP - 14040

JO - Angewandte Chemie - International Edition

JF - Angewandte Chemie - International Edition

SN - 1433-7851

IS - 52

ER -