A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wolfgang Ebeling
  • David Ploog

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)195-212
Seitenumfang18
FachzeitschriftManuscripta mathematica
Jahrgang140
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 2013

Abstract

We consider the Berglund-Hübsch transpose of a bimodal invertible polynomial and construct a triangulated category associated to the compactification of a suitable deformation of the singularity. This is done in such a way that the corresponding Grothendieck group with the (negative) Euler form can be described by a graph which corresponds to the Coxeter-Dynkin diagram with respect to a distinguished basis of vanishing cycles of the bimodal singularity.

ASJC Scopus Sachgebiete

Zitieren

A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities. / Ebeling, Wolfgang; Ploog, David.
in: Manuscripta mathematica, Jahrgang 140, Nr. 1-2, 2013, S. 195-212.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ebeling W, Ploog D. A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities. Manuscripta mathematica. 2013;140(1-2):195-212. doi: 10.1007/s00229-012-0536-3
Ebeling, Wolfgang ; Ploog, David. / A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities. in: Manuscripta mathematica. 2013 ; Jahrgang 140, Nr. 1-2. S. 195-212.
Download
@article{d282bcb32e2e4a79a33b09c538789512,
title = "A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities",
abstract = "We consider the Berglund-H{\"u}bsch transpose of a bimodal invertible polynomial and construct a triangulated category associated to the compactification of a suitable deformation of the singularity. This is done in such a way that the corresponding Grothendieck group with the (negative) Euler form can be described by a graph which corresponds to the Coxeter-Dynkin diagram with respect to a distinguished basis of vanishing cycles of the bimodal singularity. ",
author = "Wolfgang Ebeling and David Ploog",
year = "2013",
doi = "10.1007/s00229-012-0536-3",
language = "English",
volume = "140",
pages = "195--212",
journal = "Manuscripta mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1-2",

}

Download

TY - JOUR

T1 - A geometric construction of Coxeter-Dynkin diagrams of bimodal singularities

AU - Ebeling, Wolfgang

AU - Ploog, David

PY - 2013

Y1 - 2013

N2 - We consider the Berglund-Hübsch transpose of a bimodal invertible polynomial and construct a triangulated category associated to the compactification of a suitable deformation of the singularity. This is done in such a way that the corresponding Grothendieck group with the (negative) Euler form can be described by a graph which corresponds to the Coxeter-Dynkin diagram with respect to a distinguished basis of vanishing cycles of the bimodal singularity.

AB - We consider the Berglund-Hübsch transpose of a bimodal invertible polynomial and construct a triangulated category associated to the compactification of a suitable deformation of the singularity. This is done in such a way that the corresponding Grothendieck group with the (negative) Euler form can be described by a graph which corresponds to the Coxeter-Dynkin diagram with respect to a distinguished basis of vanishing cycles of the bimodal singularity.

UR - http://www.scopus.com/inward/record.url?scp=84871950194&partnerID=8YFLogxK

U2 - 10.1007/s00229-012-0536-3

DO - 10.1007/s00229-012-0536-3

M3 - Article

AN - SCOPUS:84871950194

VL - 140

SP - 195

EP - 212

JO - Manuscripta mathematica

JF - Manuscripta mathematica

SN - 0025-2611

IS - 1-2

ER -