Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 449-463 |
Seitenumfang | 15 |
Fachzeitschrift | Algebra universalis |
Jahrgang | 54 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Dez. 2005 |
Extern publiziert | Ja |
Abstract
We establish a cut-free Gentzen system for involutive residuated lattices and provide an algebraic proof of completeness. As a result we conclude that the equational theory of involutive residuated lattices is decidable. The connection to noncommutative linear logic is outlined.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Algebra universalis, Jahrgang 54, Nr. 4, 12.2005, S. 449-463.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A Gentzen system for involutive residuated lattices
AU - Wille, Annika M.
PY - 2005/12
Y1 - 2005/12
N2 - We establish a cut-free Gentzen system for involutive residuated lattices and provide an algebraic proof of completeness. As a result we conclude that the equational theory of involutive residuated lattices is decidable. The connection to noncommutative linear logic is outlined.
AB - We establish a cut-free Gentzen system for involutive residuated lattices and provide an algebraic proof of completeness. As a result we conclude that the equational theory of involutive residuated lattices is decidable. The connection to noncommutative linear logic is outlined.
KW - Equational theory
KW - Gentzen System
KW - Involutive residuated lattice
KW - Linear logic
KW - Residuated lattice
UR - http://www.scopus.com/inward/record.url?scp=33645112983&partnerID=8YFLogxK
U2 - 10.1007/s00012-005-1957-6
DO - 10.1007/s00012-005-1957-6
M3 - Article
AN - SCOPUS:33645112983
VL - 54
SP - 449
EP - 463
JO - Algebra universalis
JF - Algebra universalis
SN - 0002-5240
IS - 4
ER -