Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 901–942 |
Seitenumfang | 42 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 382 |
Ausgabenummer | 1-2 |
Frühes Online-Datum | 23 Juli 2021 |
Publikationsstatus | Veröffentlicht - Feb. 2022 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 382, Nr. 1-2, 02.2022, S. 901–942.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A generalization of Milnor's formula
AU - Zach, Matthias
N1 - Publisher Copyright: © 2021, The Author(s).
PY - 2022/2
Y1 - 2022/2
N2 - We describe a generalization of Milnor's formula for the Milnor number of an isolated hypersurface singularity to the case of a function \(f\) whose restriction \(f|(X,0)\) to an arbitrarily singular reduced complex analytic space \((X,0) \subset (\mathbb C^n,0)\) has an isolated singularity in the stratified sense. The corresponding analogue of the Milnor number, \(\mu_f(\alpha;X,0)\), is the number of Morse critical points in a stratum \(\mathscr S_\alpha\) of \((X,0)\) in a morsification of \(f|(X,0)\). Our formula expresses \(\mu_f(\alpha;X,0)\) as a homological index based on the derived geometry of the Nash modification of the closure of the stratum \(\mathscr S_\alpha\). While most of the topological aspects in this setup were already understood, our considerations provide the corresponding analytic counterpart. We also describe how to compute the numbers \(\mu_f(\alpha;X,0)\) by means of our formula in the case where the closure \(\overline{ \mathscr S_\alpha} \subset X\) of the stratum in question is a hypersurface.
AB - We describe a generalization of Milnor's formula for the Milnor number of an isolated hypersurface singularity to the case of a function \(f\) whose restriction \(f|(X,0)\) to an arbitrarily singular reduced complex analytic space \((X,0) \subset (\mathbb C^n,0)\) has an isolated singularity in the stratified sense. The corresponding analogue of the Milnor number, \(\mu_f(\alpha;X,0)\), is the number of Morse critical points in a stratum \(\mathscr S_\alpha\) of \((X,0)\) in a morsification of \(f|(X,0)\). Our formula expresses \(\mu_f(\alpha;X,0)\) as a homological index based on the derived geometry of the Nash modification of the closure of the stratum \(\mathscr S_\alpha\). While most of the topological aspects in this setup were already understood, our considerations provide the corresponding analytic counterpart. We also describe how to compute the numbers \(\mu_f(\alpha;X,0)\) by means of our formula in the case where the closure \(\overline{ \mathscr S_\alpha} \subset X\) of the stratum in question is a hypersurface.
KW - math.AG
UR - http://www.scopus.com/inward/record.url?scp=85111101420&partnerID=8YFLogxK
U2 - 10.1007/s00208-021-02223-5
DO - 10.1007/s00208-021-02223-5
M3 - Article
VL - 382
SP - 901
EP - 942
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 1-2
ER -