A Dual-Inductor Ladder Buck Converter for Li-Ion Battery-Operated Sub-Volt SoCs

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • KU Leuven
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)563 - 573
Seitenumfang11
FachzeitschriftIEEE Journal of Solid-State Circuits
Jahrgang59
Ausgabenummer2
Frühes Online-Datum30 Jan. 2024
PublikationsstatusVeröffentlicht - Feb. 2024

Abstract

This article presents a dual-inductor ladder (DIL) hybrid buck converter to support system-on-chip (SoC)-compatible subvolt (<inline-formula> <tex-math notation="LaTeX">$\le$</tex-math> </inline-formula>1 V) supply rails directly from a single-cell Li-ion battery (2.5&#x2013;5 V). Facilitating an extreme downconversion (16.67<inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula>) using scaled CMOS technology, the proposed topology presents a unique solution to address the active versus passive component utilization while still neutralizing the well-known efficiency versus power density (PD) trade-off for a hybrid converter. The balanced inductor currents help reduce the average switch currents, improving active switch utilization, while the natural soft-charging of the flying capacitors reduces the switch rms currents, improving passive component utilization and PD. The DIL, thus, presents an optimal two-inductor solution for similar applications achieving excellent efficiency and PD. Fabricated in a 65 nm bulk CMOS technology, the DIL obtains 90.6% peak efficiency, 0.93 W/mm<inline-formula> <tex-math notation="LaTeX">$^2$</tex-math> </inline-formula> peak active PD (PPD) with a maximum power delivery of 1.35 W occupying just 1.13 mm<inline-formula> <tex-math notation="LaTeX">$^2$</tex-math> </inline-formula> die area.

ASJC Scopus Sachgebiete

Zitieren

A Dual-Inductor Ladder Buck Converter for Li-Ion Battery-Operated Sub-Volt SoCs. / Mishra, Arindam; Zhu, Wei; Wicht, Bernhard et al.
in: IEEE Journal of Solid-State Circuits, Jahrgang 59, Nr. 2, 02.2024, S. 563 - 573.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Mishra A, Zhu W, Wicht B, Smedt VD. A Dual-Inductor Ladder Buck Converter for Li-Ion Battery-Operated Sub-Volt SoCs. IEEE Journal of Solid-State Circuits. 2024 Feb;59(2):563 - 573. Epub 2024 Jan 30. doi: 10.1109/jssc.2023.3313963
Download
@article{0548ec9e117745379e4cb9cbdc45efd1,
title = "A Dual-Inductor Ladder Buck Converter for Li-Ion Battery-Operated Sub-Volt SoCs",
abstract = "This article presents a dual-inductor ladder (DIL) hybrid buck converter to support system-on-chip (SoC)-compatible subvolt ( $\le$ 1 V) supply rails directly from a single-cell Li-ion battery (2.5–5 V). Facilitating an extreme downconversion (16.67 $\times$ ) using scaled CMOS technology, the proposed topology presents a unique solution to address the active versus passive component utilization while still neutralizing the well-known efficiency versus power density (PD) trade-off for a hybrid converter. The balanced inductor currents help reduce the average switch currents, improving active switch utilization, while the natural soft-charging of the flying capacitors reduces the switch rms currents, improving passive component utilization and PD. The DIL, thus, presents an optimal two-inductor solution for similar applications achieving excellent efficiency and PD. Fabricated in a 65 nm bulk CMOS technology, the DIL obtains 90.6% peak efficiency, 0.93 W/mm $^2$ peak active PD (PPD) with a maximum power delivery of 1.35 W occupying just 1.13 mm $^2$ die area.",
keywords = "Buck converter, Buck converters, CMOS technology, Capacitors, Electronics packaging, Inductors, Li-ion battery, Topology, Voltage, dc–dc converter, hybrid converter, soft-charging, switched-capacitor (SC) converter, dc converter, dc",
author = "Arindam Mishra and Wei Zhu and Bernhard Wicht and Smedt, {Valentijn De}",
year = "2024",
month = feb,
doi = "10.1109/jssc.2023.3313963",
language = "English",
volume = "59",
pages = "563 -- 573",
journal = "IEEE Journal of Solid-State Circuits",
issn = "0018-9200",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "2",

}

Download

TY - JOUR

T1 - A Dual-Inductor Ladder Buck Converter for Li-Ion Battery-Operated Sub-Volt SoCs

AU - Mishra, Arindam

AU - Zhu, Wei

AU - Wicht, Bernhard

AU - Smedt, Valentijn De

PY - 2024/2

Y1 - 2024/2

N2 - This article presents a dual-inductor ladder (DIL) hybrid buck converter to support system-on-chip (SoC)-compatible subvolt ( $\le$ 1 V) supply rails directly from a single-cell Li-ion battery (2.5–5 V). Facilitating an extreme downconversion (16.67 $\times$ ) using scaled CMOS technology, the proposed topology presents a unique solution to address the active versus passive component utilization while still neutralizing the well-known efficiency versus power density (PD) trade-off for a hybrid converter. The balanced inductor currents help reduce the average switch currents, improving active switch utilization, while the natural soft-charging of the flying capacitors reduces the switch rms currents, improving passive component utilization and PD. The DIL, thus, presents an optimal two-inductor solution for similar applications achieving excellent efficiency and PD. Fabricated in a 65 nm bulk CMOS technology, the DIL obtains 90.6% peak efficiency, 0.93 W/mm $^2$ peak active PD (PPD) with a maximum power delivery of 1.35 W occupying just 1.13 mm $^2$ die area.

AB - This article presents a dual-inductor ladder (DIL) hybrid buck converter to support system-on-chip (SoC)-compatible subvolt ( $\le$ 1 V) supply rails directly from a single-cell Li-ion battery (2.5–5 V). Facilitating an extreme downconversion (16.67 $\times$ ) using scaled CMOS technology, the proposed topology presents a unique solution to address the active versus passive component utilization while still neutralizing the well-known efficiency versus power density (PD) trade-off for a hybrid converter. The balanced inductor currents help reduce the average switch currents, improving active switch utilization, while the natural soft-charging of the flying capacitors reduces the switch rms currents, improving passive component utilization and PD. The DIL, thus, presents an optimal two-inductor solution for similar applications achieving excellent efficiency and PD. Fabricated in a 65 nm bulk CMOS technology, the DIL obtains 90.6% peak efficiency, 0.93 W/mm $^2$ peak active PD (PPD) with a maximum power delivery of 1.35 W occupying just 1.13 mm $^2$ die area.

KW - Buck converter

KW - Buck converters

KW - CMOS technology

KW - Capacitors

KW - Electronics packaging

KW - Inductors

KW - Li-ion battery

KW - Topology

KW - Voltage

KW - dc–dc converter

KW - hybrid converter

KW - soft-charging

KW - switched-capacitor (SC) converter

KW - dc converter

KW - dc

UR - http://www.scopus.com/inward/record.url?scp=85174850120&partnerID=8YFLogxK

U2 - 10.1109/jssc.2023.3313963

DO - 10.1109/jssc.2023.3313963

M3 - Article

VL - 59

SP - 563

EP - 573

JO - IEEE Journal of Solid-State Circuits

JF - IEEE Journal of Solid-State Circuits

SN - 0018-9200

IS - 2

ER -

Von denselben Autoren