A Continuous Family of Marked Poset Polytopes

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Xin Fang
  • Ghislain Fourier
  • Jan-philipp Litza
  • Christoph Pegel

Externe Organisationen

  • Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
  • Universität zu Köln
  • Universität Bremen
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)611-639
Seitenumfang29
FachzeitschriftSIAM Journal on Discrete Mathematics
Jahrgang34
Ausgabenummer1
PublikationsstatusVeröffentlicht - 3 März 2020

Abstract

For any marked poset we define a continuous family of polytopes, parametrized by a hypercube, generalizing the notions of marked order and marked chain polytopes. By providing transfer maps, we show that the vertices of the hypercube parametrize an Ehrhart equivalent family of lattice polytopes. The combinatorial type of the polytopes is constant when the parameters vary in the relative interior of each face of the hypercube. Moreover, with the help of a subdivision arising from a tropical hyperplane arrangement associated to the marked poset, we give an explicit description of the vertices of the polytope for generic parameters.

ASJC Scopus Sachgebiete

Zitieren

A Continuous Family of Marked Poset Polytopes. / Fang, Xin; Fourier, Ghislain; Litza, Jan-philipp et al.
in: SIAM Journal on Discrete Mathematics, Jahrgang 34, Nr. 1, 03.03.2020, S. 611-639.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Fang X, Fourier G, Litza J, Pegel C. A Continuous Family of Marked Poset Polytopes. SIAM Journal on Discrete Mathematics. 2020 Mär 3;34(1):611-639. doi: 10.48550/arXiv.1712.01037, 10.1137/18M1228529
Fang, Xin ; Fourier, Ghislain ; Litza, Jan-philipp et al. / A Continuous Family of Marked Poset Polytopes. in: SIAM Journal on Discrete Mathematics. 2020 ; Jahrgang 34, Nr. 1. S. 611-639.
Download
@article{3a4815311fb54b7cb018e45d141d2460,
title = "A Continuous Family of Marked Poset Polytopes",
abstract = "For any marked poset we define a continuous family of polytopes, parametrized by a hypercube, generalizing the notions of marked order and marked chain polytopes. By providing transfer maps, we show that the vertices of the hypercube parametrize an Ehrhart equivalent family of lattice polytopes. The combinatorial type of the polytopes is constant when the parameters vary in the relative interior of each face of the hypercube. Moreover, with the help of a subdivision arising from a tropical hyperplane arrangement associated to the marked poset, we give an explicit description of the vertices of the polytope for generic parameters.",
keywords = "Lattice polytopes, Marked poset polytopes, Tropical geometry",
author = "Xin Fang and Ghislain Fourier and Jan-philipp Litza and Christoph Pegel",
year = "2020",
month = mar,
day = "3",
doi = "10.48550/arXiv.1712.01037",
language = "English",
volume = "34",
pages = "611--639",
journal = "SIAM Journal on Discrete Mathematics",
issn = "0895-4801",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "1",

}

Download

TY - JOUR

T1 - A Continuous Family of Marked Poset Polytopes

AU - Fang, Xin

AU - Fourier, Ghislain

AU - Litza, Jan-philipp

AU - Pegel, Christoph

PY - 2020/3/3

Y1 - 2020/3/3

N2 - For any marked poset we define a continuous family of polytopes, parametrized by a hypercube, generalizing the notions of marked order and marked chain polytopes. By providing transfer maps, we show that the vertices of the hypercube parametrize an Ehrhart equivalent family of lattice polytopes. The combinatorial type of the polytopes is constant when the parameters vary in the relative interior of each face of the hypercube. Moreover, with the help of a subdivision arising from a tropical hyperplane arrangement associated to the marked poset, we give an explicit description of the vertices of the polytope for generic parameters.

AB - For any marked poset we define a continuous family of polytopes, parametrized by a hypercube, generalizing the notions of marked order and marked chain polytopes. By providing transfer maps, we show that the vertices of the hypercube parametrize an Ehrhart equivalent family of lattice polytopes. The combinatorial type of the polytopes is constant when the parameters vary in the relative interior of each face of the hypercube. Moreover, with the help of a subdivision arising from a tropical hyperplane arrangement associated to the marked poset, we give an explicit description of the vertices of the polytope for generic parameters.

KW - Lattice polytopes

KW - Marked poset polytopes

KW - Tropical geometry

UR - http://www.scopus.com/inward/record.url?scp=85091327982&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1712.01037

DO - 10.48550/arXiv.1712.01037

M3 - Article

VL - 34

SP - 611

EP - 639

JO - SIAM Journal on Discrete Mathematics

JF - SIAM Journal on Discrete Mathematics

SN - 0895-4801

IS - 1

ER -