A Constructive Version of Carathéodory's Convexity Theorem

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

  • Josef Berger
  • Gregor Svindland

Externe Organisationen

  • Ludwig-Maximilians-Universität München (LMU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksMathematics For Computation
Untertitel (M4C)
Herausgeber (Verlag)World Scientific Publishing Co. Pte Ltd
Seiten133-142
Seitenumfang10
ISBN (elektronisch)9789811245220
ISBN (Print)9789811245213
PublikationsstatusVeröffentlicht - Apr. 2023

Abstract

Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.

Zitieren

A Constructive Version of Carathéodory's Convexity Theorem. / Berger, Josef; Svindland, Gregor.
Mathematics For Computation: (M4C). World Scientific Publishing Co. Pte Ltd, 2023. S. 133-142.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Berger, J & Svindland, G 2023, A Constructive Version of Carathéodory's Convexity Theorem. in Mathematics For Computation: (M4C). World Scientific Publishing Co. Pte Ltd, S. 133-142. https://doi.org/10.1142/9789811245220_0005
Berger, J., & Svindland, G. (2023). A Constructive Version of Carathéodory's Convexity Theorem. In Mathematics For Computation: (M4C) (S. 133-142). World Scientific Publishing Co. Pte Ltd. https://doi.org/10.1142/9789811245220_0005
Berger J, Svindland G. A Constructive Version of Carathéodory's Convexity Theorem. in Mathematics For Computation: (M4C). World Scientific Publishing Co. Pte Ltd. 2023. S. 133-142 doi: 10.1142/9789811245220_0005
Berger, Josef ; Svindland, Gregor. / A Constructive Version of Carathéodory's Convexity Theorem. Mathematics For Computation: (M4C). World Scientific Publishing Co. Pte Ltd, 2023. S. 133-142
Download
@inbook{9aa70407f7904ea493cec095786585ae,
title = "A Constructive Version of Carath{\'e}odory's Convexity Theorem",
abstract = "Carath{\'e}odory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carath{\'e}odory's Convexity Theorem for totally bounded sets.",
author = "Josef Berger and Gregor Svindland",
year = "2023",
month = apr,
doi = "10.1142/9789811245220_0005",
language = "English",
isbn = "9789811245213",
pages = "133--142",
booktitle = "Mathematics For Computation",
publisher = "World Scientific Publishing Co. Pte Ltd",
address = "Singapore",

}

Download

TY - CHAP

T1 - A Constructive Version of Carathéodory's Convexity Theorem

AU - Berger, Josef

AU - Svindland, Gregor

PY - 2023/4

Y1 - 2023/4

N2 - Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.

AB - Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.

UR - http://www.scopus.com/inward/record.url?scp=85163038506&partnerID=8YFLogxK

U2 - 10.1142/9789811245220_0005

DO - 10.1142/9789811245220_0005

M3 - Contribution to book/anthology

AN - SCOPUS:85163038506

SN - 9789811245213

SP - 133

EP - 142

BT - Mathematics For Computation

PB - World Scientific Publishing Co. Pte Ltd

ER -