Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Mathematics For Computation |
Untertitel | (M4C) |
Herausgeber (Verlag) | World Scientific Publishing Co. Pte Ltd |
Seiten | 133-142 |
Seitenumfang | 10 |
ISBN (elektronisch) | 9789811245220 |
ISBN (Print) | 9789811245213 |
Publikationsstatus | Veröffentlicht - Apr. 2023 |
Abstract
Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Mathematics For Computation: (M4C). World Scientific Publishing Co. Pte Ltd, 2023. S. 133-142.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - A Constructive Version of Carathéodory's Convexity Theorem
AU - Berger, Josef
AU - Svindland, Gregor
PY - 2023/4
Y1 - 2023/4
N2 - Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.
AB - Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of Rm can be written as the convex combination of m + 1 elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.
UR - http://www.scopus.com/inward/record.url?scp=85163038506&partnerID=8YFLogxK
U2 - 10.1142/9789811245220_0005
DO - 10.1142/9789811245220_0005
M3 - Contribution to book/anthology
AN - SCOPUS:85163038506
SN - 9789811245213
SP - 133
EP - 142
BT - Mathematics For Computation
PB - World Scientific Publishing Co. Pte Ltd
ER -