Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 483-494 |
Seitenumfang | 12 |
Fachzeitschrift | Journal of algebra |
Jahrgang | 589 |
Frühes Online-Datum | 21 Juli 2021 |
Publikationsstatus | Veröffentlicht - 2022 |
Extern publiziert | Ja |
Abstract
Let G=SL(2,5) be the special linear group of 2×2-matrices with coefficients in the field with 5 elements. We show that the principal block over a splitting field K of characteristic two of the group algebra KG has a 3-cluster tilting module. This gives the first example of a representation-infinite block of a group algebra having a cluster tilting module and answers a question by Erdmann and Holm.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of algebra, Jahrgang 589, 2022, S. 483-494.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A cluster tilting module for a representation-infinite block of a group algebra
AU - Böhmler, Bernhard
AU - Marczinzik, René
N1 - Funding Information: We thank Karin Erdmann for having informed us in private communication that she has also found a 3-cluster tilting module for another algebra of quaternion type which is not a block of a group algebra, see also [5] . We thank Thorsten Holm for providing a reference to his habilitation thesis. We thank the anonymous referee for useful suggestions, in particular for the recommendation to add a theoretic argument for the existence of a 3-cluster tilting module. Bernhard Böhmler gratefully acknowledges funding by the DFG ( SFB/TRR 195 ). René Marczinzik gratefully acknowledges funding by the DFG (with project number 428999796 ). We profited from the use of the GAP-package [15] .
PY - 2022
Y1 - 2022
N2 - Let G=SL(2,5) be the special linear group of 2×2-matrices with coefficients in the field with 5 elements. We show that the principal block over a splitting field K of characteristic two of the group algebra KG has a 3-cluster tilting module. This gives the first example of a representation-infinite block of a group algebra having a cluster tilting module and answers a question by Erdmann and Holm.
AB - Let G=SL(2,5) be the special linear group of 2×2-matrices with coefficients in the field with 5 elements. We show that the principal block over a splitting field K of characteristic two of the group algebra KG has a 3-cluster tilting module. This gives the first example of a representation-infinite block of a group algebra having a cluster tilting module and answers a question by Erdmann and Holm.
KW - Algebras of quaternion type
KW - Cluster tilting modules
KW - Group algebras
UR - http://www.scopus.com/inward/record.url?scp=85111320575&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2101.10217
DO - 10.48550/arXiv.2101.10217
M3 - Article
VL - 589
SP - 483
EP - 494
JO - Journal of algebra
JF - Journal of algebra
SN - 0021-8693
ER -