Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 267-292 |
Seitenumfang | 26 |
Fachzeitschrift | Journal of Differential Equations |
Jahrgang | 143 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 1 März 1998 |
Extern publiziert | Ja |
Abstract
The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Differential Equations, Jahrgang 143, Nr. 2, 01.03.1998, S. 267-292.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A Center Manifold Analysis for the Mullins-Sekerka Model
AU - Escher, Joachim
AU - Simonett, Gieri
PY - 1998/3/1
Y1 - 1998/3/1
N2 - The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity.
AB - The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity.
KW - Mullins-Sekerka model; mean curvature; free boundary problem; generalized motion by mean curvature; center manifold
UR - http://www.scopus.com/inward/record.url?scp=0001025274&partnerID=8YFLogxK
U2 - 10.1006/jdeq.1997.3373
DO - 10.1006/jdeq.1997.3373
M3 - Article
AN - SCOPUS:0001025274
VL - 143
SP - 267
EP - 292
JO - Journal of Differential Equations
JF - Journal of Differential Equations
SN - 0022-0396
IS - 2
ER -