A Besov Space Mapping Property for the Double Layer Potential on Polygons

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Externe Organisationen

  • Universität Kassel
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)153-162
Seitenumfang10
FachzeitschriftInternational Journal of Phytoremediation
Jahrgang21
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2002
Extern publiziertJa

Abstract

A classical boundedness property for the double layer potential on polygons with respect to Sobolev spaces is extended to a scale of Besov spaces which is related to adaptive restricted nonlinear approximation schemes.

ASJC Scopus Sachgebiete

Zitieren

A Besov Space Mapping Property for the Double Layer Potential on Polygons. / Hochmuth, Reinhard.
in: International Journal of Phytoremediation, Jahrgang 21, Nr. 1, 2002, S. 153-162.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{9debf675dbcb4eda9e4e12daf595360b,
title = "A Besov Space Mapping Property for the Double Layer Potential on Polygons",
abstract = "A classical boundedness property for the double layer potential on polygons with respect to Sobolev spaces is extended to a scale of Besov spaces which is related to adaptive restricted nonlinear approximation schemes.",
keywords = "Besov Spaces, Boundedness, Double Layer Potential, Polygons",
author = "Reinhard Hochmuth",
year = "2002",
doi = "10.1080/0003681021000021123",
language = "English",
volume = "21",
pages = "153--162",
journal = "International Journal of Phytoremediation",
issn = "1522-6514",
publisher = "Taylor and Francis Ltd.",
number = "1",

}

Download

TY - JOUR

T1 - A Besov Space Mapping Property for the Double Layer Potential on Polygons

AU - Hochmuth, Reinhard

PY - 2002

Y1 - 2002

N2 - A classical boundedness property for the double layer potential on polygons with respect to Sobolev spaces is extended to a scale of Besov spaces which is related to adaptive restricted nonlinear approximation schemes.

AB - A classical boundedness property for the double layer potential on polygons with respect to Sobolev spaces is extended to a scale of Besov spaces which is related to adaptive restricted nonlinear approximation schemes.

KW - Besov Spaces

KW - Boundedness

KW - Double Layer Potential

KW - Polygons

UR - http://www.scopus.com/inward/record.url?scp=85071207051&partnerID=8YFLogxK

U2 - 10.1080/0003681021000021123

DO - 10.1080/0003681021000021123

M3 - Article

AN - SCOPUS:85071207051

VL - 21

SP - 153

EP - 162

JO - International Journal of Phytoremediation

JF - International Journal of Phytoremediation

SN - 1522-6514

IS - 1

ER -

Von denselben Autoren