Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 536-548 |
Seitenumfang | 13 |
Fachzeitschrift | Computational Materials Science |
Jahrgang | 96 |
Ausgabenummer | PB |
Publikationsstatus | Veröffentlicht - 21 Juni 2014 |
Extern publiziert | Ja |
Abstract
Based on the assumptions of periodicity and separation of two length scales, a 3D computational homogenization model is developed for porous material. The method is implemented based on the finite element method by assuming linear material behavior. Numerical examples show that the variation of pore geometry and spatial distribution will result in much higher level local stress concentration compared to the macroscale smeared out stress, apart from bringing the material properties in transition to transverse isotropy. The convergence studies and the comparison to the reference/analytical solution show that the linear computational homogenization is an effective method for modelling the linear elastic porous materials.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Allgemeine Computerwissenschaft
- Chemie (insg.)
- Allgemeine Chemie
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Mathematik (insg.)
- Computational Mathematics
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Computational Materials Science, Jahrgang 96, Nr. PB, 21.06.2014, S. 536-548.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A 3D computational homogenization model for porous material and parameters identification
AU - Zhuang, Xiaoying
AU - Wang, Qing
AU - Zhu, Hehua
N1 - Funding information: The authors gratefully acknowledge the supports from the NSFC Key Program ( 41130751 ), the National Basic Research Program of China (973 Program: 2011CB013800 ), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1029 ), the Western China Communication ( 2011ZB04 ), the Shanghai Chenguang Program ( 12CG20 ).
PY - 2014/6/21
Y1 - 2014/6/21
N2 - Based on the assumptions of periodicity and separation of two length scales, a 3D computational homogenization model is developed for porous material. The method is implemented based on the finite element method by assuming linear material behavior. Numerical examples show that the variation of pore geometry and spatial distribution will result in much higher level local stress concentration compared to the macroscale smeared out stress, apart from bringing the material properties in transition to transverse isotropy. The convergence studies and the comparison to the reference/analytical solution show that the linear computational homogenization is an effective method for modelling the linear elastic porous materials.
AB - Based on the assumptions of periodicity and separation of two length scales, a 3D computational homogenization model is developed for porous material. The method is implemented based on the finite element method by assuming linear material behavior. Numerical examples show that the variation of pore geometry and spatial distribution will result in much higher level local stress concentration compared to the macroscale smeared out stress, apart from bringing the material properties in transition to transverse isotropy. The convergence studies and the comparison to the reference/analytical solution show that the linear computational homogenization is an effective method for modelling the linear elastic porous materials.
KW - 3D computational homogenization
KW - Local stress concentration
KW - Multiscale modelling
KW - Parameter identification
KW - Porous material
UR - http://www.scopus.com/inward/record.url?scp=84908692097&partnerID=8YFLogxK
U2 - 10.1016/j.commatsci.2014.04.059
DO - 10.1016/j.commatsci.2014.04.059
M3 - Article
AN - SCOPUS:84908692097
VL - 96
SP - 536
EP - 548
JO - Computational Materials Science
JF - Computational Materials Science
SN - 0927-0256
IS - PB
ER -