Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 679-698 |
Seitenumfang | 20 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 362 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - 1 Juni 2015 |
Abstract
Let k be a field of characteristic p≥0 with p≠2,3. We prove that there are no geometrically smooth quartic surfaces S⊂P k3 with more than 64 lines. As a key step, we derive the sharp bound that any line meets at most 20 other lines on S
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 362, Nr. 1-2, 01.06.2015, S. 679-698.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - 64 lines on smooth quartic surfaces
AU - Schütt, Matthias
AU - Rams, Slawomir
N1 - Funding information: We are indebted to Wolf Barth for sharing his insights on the subject starting more than 10 years ago. Thanks to Achill Schürmann for helpful discussions on quadratic forms. We are grateful to Igor Dolgachev, Duco van Straten and the anonymous referee for their valuable comments. This project was started in March 2011 when Schütt enjoyed the hospitality of the Jagiellonian University in Krakow. Special thanks to S?awomir Cynk. Funding by ERC StG 279723 (SURFARI) and NCN Grant N N201 608040 (S. Rams) is gratefully acknowledged.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Let k be a field of characteristic p≥0 with p≠2,3. We prove that there are no geometrically smooth quartic surfaces S⊂P k3 with more than 64 lines. As a key step, we derive the sharp bound that any line meets at most 20 other lines on S
AB - Let k be a field of characteristic p≥0 with p≠2,3. We prove that there are no geometrically smooth quartic surfaces S⊂P k3 with more than 64 lines. As a key step, we derive the sharp bound that any line meets at most 20 other lines on S
KW - math.AG
KW - math.NT
KW - 14J25, 14J28, 14J70, 14N25
KW - K3 surfaces
KW - elliptic fibration
KW - positive characteristic
KW - 14J25
KW - 14N25
KW - 14J28
KW - 14J70
UR - http://www.scopus.com/inward/record.url?scp=84939943235&partnerID=8YFLogxK
U2 - 10.1007/s00208-014-1139-y
DO - 10.1007/s00208-014-1139-y
M3 - Article
VL - 362
SP - 679
EP - 698
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 1-2
ER -