This dataset is used for the classification of traffic intersections regulation rules using car GPS trajectories. In order to apply supervised classification methods, the ground-truth information is also contained in this dataset. The regulators are annotated based on the intersection arms at each intersection. An overview of the dataset's trajectories can be seen in the subsequent figure: ![Overview of the dataset containing the trajectories collected in Edessa.](https://data.uni-hannover.de/dataset/57869009-330e-49be-bc63-56fb56952bdb/resource/c5fddb86-82f5-491a-9099-51e5a9109cda/download/edessa_traj.png) An overview of the related intersection regulator ground-truth rules can be seen in the following figure: ![](https://data.uni-hannover.de/dataset/57869009-330e-49be-bc63-56fb56952bdb/resource/c8d75ea3-83ed-445a-a1db-38ca092f94a6/download/edessa_traj_junc_rules.png) ## Data Acquisition The trajectory samples were recorded using an android smartphone while driving a car in and around the city of Edessa, Greece. The acquisition period was from March 2018 to September 2018 (6 month) by only a single person. The recording of the trajectories has taken place without restrictions in order to reflect a normal behavior of everyday car journeys. The sampling rate is approximately 1 sample per second. Additionally to the GPS trajectories, the ground-truth regulator rules of the traffic intersections were annotated via street view images. ## Related Publications: * __Zourlidou, S., Sester, M. and Hu, S. (2022):__ Recognition of Intersection Traffic Regulations From Crowdsourced Data. Preprints 2022, 2022070012. DOI: 10.20944/preprints202207.0012.v1 * __Zourlidou, S., Golze, J. and Sester, M. (2022):__ Traffic Regulation Recognition using Crowd-Sensed GPS and Map Data: a Hybrid Approach, AGILE GIScience Ser., 3, 22, 2022. https://doi.org/10.5194/agile-giss-3-22-2022 * __Cheng, H., Lei, H., Zourlidou, S., Sester, M. (2022):__ Traffic Control Recognition with an Attention Mechanism Using Speed-Profile and Satellite Imagery data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022, S. 287–29. https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-287-2022 * __Wang, C., Zourlidou, S., Golze, J. and Sester, M. (2020):__ Trajectory analysis at intersections for traffic rule identification. Geo-spatial Information Science, 11(4):1-10. https://doi.org/10.1080/10095020.2020.1843374 * __Cheng, H., Zourlidou, S. and Sester, M. (2020):__ Traffic Control Recognition with Speed-Profiles: A Deep Learning Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 652. https://doi.org/10.3390/ijgi9110652 * __Golze, J., Zourlidou, S. and Sester, M. (2020):__ Traffic Regulator Detection Using GPS Trajectories. KN J. Cartogr. Geogr. Inf. https://doi.org/10.1007/s42489-020-00048-x * __Zourlidou, S., Fischer, C. and Sester, M. (2019):__ Classification of street junctions according to traffic regulators. In: _Kyriakidis, P., Hadjimitsis, D., Skarlatos, D. and Mansourian, A., (eds) 2019_. Accepted short papers and posters from the 22nd AGILE conference on geo-information science. Cyprus University of Technology 17–20 June 2019, Limassol, Cyprus. ## Related Datasets: * __Zourlidou, S., Golze, J. and Sester, M. (2022).__ Dataset: GPS Trajectory Dataset of the Region of Hannover, Germany. https://doi.org/10.25835/9bidqxvl * __Zourlidou, S., Golze, J. and Sester, M. (2022).__ Dataset: Traffic Regulator Ground-truth Information for the Chicago Trajectory Dataset. https://doi.org/10.25835/0vifyzqi * __Zourlidou, S., Golze, J. and Sester, M. (2022).__ Dataset: Traffic Regulator Ground-truth Information of the City of Hannover, Germany. https://doi.org/10.25835/cqg0x1el * __Zourlidou, S., Golze, J. and Sester, M. (2020).__ Dataset: Speed profiles and GPS Trajectories for Traffic Rule Recognition (6 Junctions, Hannover, Germany). https://doi.org/10.25835/0043786